scholarly journals Methods for Integrated Air Sampling and DNA Analysis for Detection of Airborne Fungal Spores

2001 ◽  
Vol 67 (6) ◽  
pp. 2453-2459 ◽  
Author(s):  
Roger H. Williams ◽  
Elaine Ward ◽  
H. Alastair McCartney

ABSTRACT Integrated air sampling and PCR-based methods for detecting airborne fungal spores, using Penicillium roqueforti as a model fungus, are described. P. roqueforti spores were collected directly into Eppendorf tubes using a miniature cyclone-type air sampler. They were then suspended in 0.1% Nonidet P-40, and counted using microscopy. Serial dilutions of the spores were made. Three methods were used to produce DNA for PCR tests: adding untreated spores to PCRs, disrupting spores (fracturing of spore walls to release the contents) using Ballotini beads, and disrupting spores followed by DNA purification. Three P. roqueforti-specific assays were tested: single-step PCR, nested PCR, and PCR followed by Southern blotting and probing. Disrupting the spores was found to be essential for achieving maximum sensitivity of the assay. Adding untreated spores to the PCR did allow the detection of P. roqueforti, but this was never achieved when fewer than 1,000 spores were added to the PCR. By disrupting the spores, with or without subsequent DNA purification, it was possible to detect DNA from a single spore. When known quantities of P. roqueforti spores were added to air samples consisting of high concentrations of unidentified fungal spores, pollen, and dust, detection sensitivity was reduced. P. roqueforti DNA could not be detected using untreated or disrupted spore suspensions added to the PCRs. However, using purified DNA, it was possible to detect 10 P. roqueforti spores in a background of 4,500 other spores. For all DNA extraction methods, nested PCR was more sensitive than single-step PCR or PCR followed by Southern blotting.

2002 ◽  
Vol 50 (9) ◽  
pp. 1237-1245 ◽  
Author(s):  
Chikako Uneyama ◽  
Makoto Shibutani ◽  
Naoya Masutomi ◽  
Hironori Takagi ◽  
Masao Hirose

We recently found methacarn to be a versatile fixative for analysis of RNA and protein applicable for microdissected specimens from paraffin-embedded tissue (PET). In this study we investigated the performance of methacarn for genomic DNA analysis using microdissected rat tissues. We found that extensive portions of DNA up to 2.8 kb could be amplified by nested PCR using DNA templates extracted by a simple and rapid extraction procedure from a 1 × 1-mm area of cerebral cortex of a 10-μm-thick section. By nested PCR, a 522-bp fragment from a single cell could be amplified in 20% of cresyl violet-stained Purkinje cells, and the minimal number of cells required, as estimated using hippocampal neurons, was on the order of 10-20. Although tissue staining with hematoxylin and eosin affected the PCR, amplification of a 522-bp fragment was successful, with 150-270 cells by 35 cycles of single-step PCR. Immunostaining resulted in a substantial decrease of yield and degradation of extracted DNA. However, even after immunostaining, a 184-bp DNA fragment could be amplified with 150-270 cells by 35 cycles of PCR. The results thus demonstrate the superior performance of methacarn to that reported with formalin in genomic DNA analysis using microdissected PET specimens.


Aerobiologia ◽  
2004 ◽  
Vol 20 (1) ◽  
pp. 75-81 ◽  
Author(s):  
Padmanabhan S. Jothish ◽  
Themath Soman Nayar

2013 ◽  
Vol 13 (1) ◽  
pp. 1767-1793 ◽  
Author(s):  
J. A. Huffman ◽  
C. Pöhlker ◽  
A. J. Prenni ◽  
P. J. DeMott ◽  
R. H. Mason ◽  
...  

Abstract. Bioaerosols are relevant for public health and may play an important role in the climate system, but their atmospheric abundance, properties and sources are not well understood. Here we show that the concentration of airborne biological particles in a forest ecosystem increases dramatically during rain and that bioparticles are closely correlated with atmospheric ice nuclei (IN). The greatest increase of bioparticles and IN occurred in the size range of 2–6 μm, which is characteristic for bacterial aggregates and fungal spores. By DNA analysis we found high diversities of airborne bacteria and fungi, including human and plant pathogens (mildew, smut and rust fungi, molds, Enterobacteraceae, Pseudomonadaceae). In addition to known bacterial and fungal IN (Pseudomonas sp., Fusarium sporotrichioides), we discovered two species of IN-active fungi that were not previously known as biological ice nucleators (Isaria farinosa and Acremonium implicatum). Our findings suggest that atmospheric bioaerosols, IN and rainfall are more tightly coupled than previously assumed.


2004 ◽  
Vol 30 (6) ◽  
pp. 381-385 ◽  
Author(s):  
Rafael Martínez-Girón ◽  
Andrés Ribas-Barceló ◽  
M Teresa García-Miralles ◽  
Dolores López-Cabanilles ◽  
M Luisa Tamargo-Peláez ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document