bacterial aggregates
Recently Published Documents


TOTAL DOCUMENTS

103
(FIVE YEARS 37)

H-INDEX

24
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Jean-Philippe Corre ◽  
Dorian Obino ◽  
Pierre Nivoit ◽  
Aline Yatim ◽  
Taliah Schmitt ◽  
...  

Meningococcal infections remain particularly difficult to treat. Despite antibiotic therapy, the state of the patients often rapidly deteriorates. Early clinical studies suggest that meningococci acquire a form of resistance to antibiotic treatments during infections. Taking advantage of a humanized animal model of infection, we confirm that adherent bacteria become highly resistant to antibiotic treatments as early as 3-6 hours post infection, although fully sensitive in vitro. Within this time frame, meningococci adhere to the endothelium via their type IV pili, proliferate and eventually fill the vessel lumen. Using intravital imaging, we show that rapidly upon infection blood flow is dramatically decreased, thus limiting antibiotic access to infected vessels. Concomitantly, fibrin is deposited inside infected vessels in proximity to bacterial aggregates. Pharmacologically impairing thrombin generation by inhibiting Factor X activity not only improves blood flow in infected vessels, but also enhances the efficacy of the antibiotic treatment. Our results indicate that the combined administration of anticoagulants together with antibiotics might represent a therapeutic approach to treat meningococcal sepsis more efficiently.


2022 ◽  
Vol 18 (1) ◽  
pp. e1009153
Author(s):  
George Courcoubetis ◽  
Manasi S. Gangan ◽  
Sean Lim ◽  
Xiaokan Guo ◽  
Stephan Haas ◽  
...  

Chemotactic bacteria form emergent spatial patterns of variable cell density within cultures that are initially spatially uniform. These patterns are the result of chemical gradients that are created from the directed movement and metabolic activity of billions of cells. A recent study on pattern formation in wild bacterial isolates has revealed unique collective behaviors of the bacteria Enterobacter cloacae. As in other bacterial species, Enterobacter cloacae form macroscopic aggregates. Once formed, these bacterial clusters can migrate several millimeters, sometimes resulting in the merging of two or more clusters. To better understand these phenomena, we examine the formation and dynamics of thousands of bacterial clusters that form within a 22 cm square culture dish filled with soft agar over two days. At the macroscale, the aggregates display spatial order at short length scales, and the migration of cell clusters is superdiffusive, with a merging acceleration that is correlated with aggregate size. At the microscale, aggregates are composed of immotile cells surrounded by low density regions of motile cells. The collective movement of the aggregates is the result of an asymmetric flux of bacteria at the boundary. An agent-based model is developed to examine how these phenomena are the result of both chemotactic movement and a change in motility at high cell density. These results identify and characterize a new mechanism for collective bacterial motility driven by a transient, density-dependent change in motility.


2022 ◽  
Vol 52 (5) ◽  
Author(s):  
Franciéli Adriane Molossi ◽  
Tainah Pereira Dal Pont ◽  
Joana Vargas Zillig Echenique ◽  
Bruno Albuquerque de Almeida ◽  
Bruna Correa Lopes ◽  
...  

ABSTRACT: Respiratory problems due to tracheobronchial foreign bodies (FBs) are unusual in horses; although equines kept in pastures eventually inhale FBs, as conifer twigs of Araucaria angustifolia. A 1,5-year-old Criolle foal was presented with hemoptysis, dyspnea, restlessness and fever (40.9 ºC rectal temperature). Complete blood count showed intense neutropenia, monocytosis, thrombocytopenia and hypoproteinemia. Treatment was carried out but no clinical improvement was observed. At the post-mortem examination, marked amount of dark red liquid was observed in the thoracic cavity (hemothorax). The lung parenchyma was diffusely consolidated, predominantly in the cranioventral area, associated with mild pleural fibrin deposition. The right primary bronchus was obliterated by a Araucaria angustifolia pine branch measuring 18 cm in length, with adjacent darkened areas (lung consolidation). Microscopically, there was diffuse necrosis with severe hemorrhage in the lungs, associated with marked neutrophilic inflammatory infiltrate, numerous coccoid bacterial aggregates, and fibrinous pleuritis. Additionally, there was diffuse alveolar edema and multifocal thrombosis. Lung fragments were submitted for bacterial culture and mixed bacterial growth was observed with a predominance of Streptococcus equi subsp. zooepidemicus. Inhalation of branches is not commonly reported in horses, but it must be included in the differential diagnoses of pneumonia, and attention should be taken when allowing horses to graze in areas where the plant occurs.


Author(s):  
Mohammadali Masigol ◽  
Esther L. Radaha ◽  
Arvind D. Kannan ◽  
Abigail G. Salberg ◽  
Niloufar Fattahi ◽  
...  

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Sonali Singh ◽  
Yasir Almuhanna ◽  
Mohammad Y. Alshahrani ◽  
Douglas W. Lowman ◽  
Peter J. Rice ◽  
...  

AbstractBacterial biofilms represent a challenge to the healthcare system because of their resilience against antimicrobials and immune attack. Biofilms consist of bacterial aggregates embedded in an extracellular polymeric substance (EPS) composed of polysaccharides, nucleic acids and proteins. We hypothesised that carbohydrates could contribute to immune recognition of Pseudomonas aeruginosa biofilms by engaging C-type lectins. Here we show binding of Dendritic Cell-Specific Intercellular adhesion molecule-3-Grabbing Non-integrin (DC-SIGN, CD209), mannose receptor (MR, CD206) and Dectin-2 to P. aeruginosa biofilms. We also demonstrate that DC-SIGN, unlike MR and Dectin-2, recognises planktonic P. aeruginosa cultures and this interaction depends on the presence of the common polysaccharide antigen. Within biofilms DC-SIGN, Dectin-2 and MR ligands appear as discrete clusters with dispersed DC-SIGN ligands also found among bacterial aggregates. DC-SIGN, MR and Dectin-2 bind to carbohydrates purified from P. aeruginosa biofilms, particularly the high molecular weight fraction (HMW; >132,000 Da), with KDs in the nM range. These HMW carbohydrates contain 74.9–80.9% mannose, display α-mannan segments, interfere with the endocytic activity of cell-associated DC-SIGN and MR and inhibit Dectin-2-mediated cellular activation. In addition, biofilm carbohydrates reduce the association of the DC-SIGN ligand Lewisx, but not fucose, to human monocyte-derived dendritic cells (moDCs), and alter moDC morphology without affecting early cytokine production in response to lipopolysaccharide or P. aeruginosa cultures. This work identifies the presence of ligands for three important C-type lectins within P. aeruginosa biofilm structures and purified biofilm carbohydrates and highlights the potential for these receptors to impact immunity to P. aeruginosa infection.


Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7096
Author(s):  
Michał Konieczny ◽  
Peter Rhein ◽  
Katarzyna Czaczyk ◽  
Wojciech Białas ◽  
Wojciech Juzwa

The aim of the research was to design an advanced analytical tool for the precise characterization of microbial aggregates from biofilms formed on food-processing surfaces. The approach combined imaging flow cytometry with a machine learning-based interpretation protocol. Biofilm samples were collected from three diagnostic points of the food-processing lines at two independent time points. The samples were investigated for the complexity of microbial aggregates and cellular metabolic activity. Thus, aggregates and singlets of biofilm-associated microbes were simultaneously examined for the percentages of active, mid-active, and nonactive (dead) cells to evaluate the physiology of the microbial cells forming the biofilm structures. The tested diagnostic points demonstrated significant differences in the complexity of microbial aggregates. The significant percentages of the bacterial aggregates were associated with the dominance of active microbial cells, e.g., 75.3% revealed for a mushroom crate. This confirmed the protective role of cellular aggregates for the survival of active microbial cells. Moreover, the approach enabled discriminating small and large aggregates of microbial cells. The developed tool provided more detailed characteristics of bacterial aggregates within a biofilm structure combined with high-throughput screening potential. The designed methodology showed the prospect of facilitating the detection of invasive biofilm forms in the food industry environment.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Brandon H Schlomann ◽  
Raghuveer Parthasarathy

The spatial organization of gut microbiota influences both microbial abundances and host-microbe interactions, but the underlying rules relating bacterial dynamics to large-scale structure remain unclear. To this end we studied experimentally and theoretically the formation of three-dimensional bacterial clusters, a key parameter controlling susceptibility to intestinal transport and access to the epithelium. Inspired by models of structure formation in soft materials, we sought to understand how the distribution of gut bacterial cluster sizes emerges from bacterial-scale kinetics. Analyzing imaging-derived data on cluster sizes for eight different bacterial strains in the larval zebrafish gut, we find a common family of size distributions that decay approximately as power laws with exponents close to -2, becoming shallower for large clusters in a strain-dependent manner. We show that this type of distribution arises naturally from a Yule-Simons-type process in which bacteria grow within clusters and can escape from them, coupled to an aggregation process that tends to condense the system toward a single massive cluster, reminiscent of gel formation. Together, these results point to the existence of general, biophysical principles governing the spatial organization of the gut microbiome that may be useful for inferring fast-timescale dynamics that are experimentally inaccessible.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
J. Pattem ◽  
T. Swift ◽  
S. Rimmer ◽  
T. Holmes ◽  
S. MacNeil ◽  
...  

AbstractMicrobial keratitis occurs from the infection of the cornea by fungi and or bacteria. It remains one of the most common global causes of irreversible blindness accounting for 3.5% (36 million) of blind people as of 2015. This paper looks at the use of a bacteria binding polymer designed to bind Staphylococcus aureus and remove it from the corneal surface. Mechanical unbinding measurements were used to probe the interactions of a thermo-active bacteria-binding polymer, highly-branched poly(N-isopropyl acrylamide), functionalised with modified vancomycin end groups (HB-PNIPAM-Van) to bacteria placed on rabbit corneal surfaces studied ex-vivo. This was conducted during sequential temperature phase transitions of HB-PNIPAM-Van-S. aureus below, above and below the lower critical solution temperature (LCST) in 3 stages, in-vitro, using a novel micro-bead force spectroscopy (MBFS) approach via atomic force microscopy (AFM). The effect of temperature on the functionality of HB-PNIPAM-Van-S. aureus showed that the polymer-bacteria complex reduced the work done in removing bacterial aggregates at T > LCST (p < 0.05), exhibiting reversibility at T < LCST (p < 0.05). At T < LCST, the breaking force, number of unbinding events, percentage fitted segments in the short and long range, and the percentage of unbinding events occurring in the long range (> 2.5 µm) increased (p < 0.05). Furthermore, the LCST phase transition temperature showed 100 × more unbinding events in the long-range z-length (> 2.5 µm) compared to S. aureus aggregates only. Here, we present the first study using AFM to assess the reversible mechanical impact of a thermo-active polymer-binding bacteria on a natural corneal surface.


2021 ◽  
Author(s):  
James Q Boedicker ◽  
George Courcoutbetis ◽  
Manasi Gangan ◽  
Sean Lim ◽  
Xiaokan Guo ◽  
...  

Chemotactic bacteria form emergent spatial patterns of variable cell density within cultures that are initially spatially uniform. These patterns are the result of chemical gradients that are created from the directed movement and metabolic activity of billions of cells. A recent study on pattern formation in wild bacterial isolates has revealed unique collective behaviors of the bacteria Enterobacter cloacae . As in other bacteria species, Enterobacter cloacae form macroscopic aggregates. Once formed, these bacterial clusters can migrate several millimeters, sometimes resulting in the merging of two or more clusters. To better understand these phenomena, we examine the formation and dynamics of thousands of bacterial clusters that form within a 22 cm square culture dish filled with soft agar over two days. At the macroscale, the aggregates display spatial order at short length scales, and the migration of cell clusters is superdiffusive, with a merging acceleration that is correlated with aggregate size. At the microscale, aggregates are composed of immotile cells surrounded by low density regions of motile cells. The collective movement of the aggregates is the result of an asymmetric flux of bacteria at the boundary. An agent based model is developed to examine how these phenomena are the result of both chemotactic movement and a change in motility at high cell density. These results identify and characterize a new mechanism for collective bacterial motility driven by a transient, density-dependent change in motility.


2021 ◽  
Author(s):  
Brandon H Schlomann ◽  
Raghuveer Parthasarathy

The spatial organization of gut microbiota influences both microbial abundances and host-microbe interactions, but the underlying rules relating bacterial dynamics to large-scale structure remain unclear. To this end we studied experimentally and theoretically the formation of three-dimensional bacterial clusters, a key parameter controlling susceptibility to intestinal transport and access to the epithelium. Inspired by models of structure formation in soft materials, we sought to understand how the distribution of gut bacterial cluster sizes emerges from bacterial-scale kinetics. Analyzing imaging-derived data on cluster sizes for eight different bacterial strains in the larval zebrafish gut, we find a common family of size distributions that decay approximately as power laws with exponents close to -2, becoming shallower for large clusters in a strain-dependent manner. We show that this type of distribution arises naturally from a Yule-Simons-type process in which bacteria grow within clusters and can escape from them, coupled to an aggregation process that tends to condense the system toward a single massive cluster, reminiscent of gel formation. Together, these results point to the existence of general, biophysical principles governing the spatial organization of the gut microbiome that may be useful for inferring fast-timescale dynamics that are experimentally inaccessible.


Sign in / Sign up

Export Citation Format

Share Document