scholarly journals Nitrous Oxide Formation in the Colne Estuary in England: the Central Role of Nitrite

2002 ◽  
Vol 68 (10) ◽  
pp. 5202-5204 ◽  
Author(s):  
J. Dolfing ◽  
D. B. Nedwell ◽  
L. F. Dong
2002 ◽  
Vol 68 (3) ◽  
pp. 1240-1249 ◽  
Author(s):  
Liang F. Dong ◽  
David B. Nedwell ◽  
Graham J. C. Underwood ◽  
Daniel C. O. Thornton ◽  
Iman Rusmana

ABSTRACT Nitrate and nitrite concentrations in the water and nitrous oxide and nitrite fluxes across the sediment-water interface were measured monthly in the River Colne estuary, England, from December 1996 to March 1998. Water column concentrations of N2O in the Colne were supersaturated with respect to air, indicating that the estuary was a source of N2O for the atmosphere. At the freshwater end of the estuary, nitrous oxide effluxes from the sediment were closely correlated with the nitrite concentrations in the overlying water and with the nitrite influx into the sediment. Increases in N2O production from sediments were about 10 times greater with the addition of nitrite than with the addition of nitrate. Rates of denitrification were stimulated to a larger extent by enhanced nitrite than by nitrate concentrations. At 550 μM nitrite or nitrate (the highest concentration used), the rates of denitrification were 600 μmol N · m−2 · h−1 with nitrite but only 180 μmol N · m−2 · h−1 with nitrate. The ratios of rates of nitrous oxide production and denitrification (N2O/N2 × 100) were significantly higher with the addition of nitrite (7 to 13% of denitrification) than with nitrate (2 to 4% of denitrification). The results suggested that in addition to anaerobic bacteria, which possess the complete denitrification pathway for N2 formation in the estuarine sediments, there may be two other groups of bacteria: nitrite denitrifiers, which reduce nitrite to N2 via N2O, and obligate nitrite-denitrifying bacteria, which reduce nitrite to N2O as the end product. Consideration of free-energy changes during N2O formation led to the conclusion that N2O formation using nitrite as the electron acceptor is favored in the Colne estuary and may be a critical factor regulating the formation of N2O in high-nutrient-load estuaries.


2017 ◽  
Vol 54 (1) ◽  
pp. 119-135 ◽  
Author(s):  
Pengwei Yao ◽  
Xiaosha Li ◽  
Jiancan Liu ◽  
Yufang Shen ◽  
Shanchao Yue ◽  
...  

AIChE Journal ◽  
1993 ◽  
Vol 39 (8) ◽  
pp. 1342-1354 ◽  
Author(s):  
Tore Hulgaard ◽  
Kim Dam-Johansen

2018 ◽  
Vol 54 (9) ◽  
pp. 1097-1100 ◽  
Author(s):  
Sharareh Bagherzadeh ◽  
Neal P. Mankad

N2O reactivity of a [Cu2S] complex implies that tetranuclearity imparts oxidative stability to the CuZ site in nitrous oxide reductase.


Water ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 2169 ◽  
Author(s):  
Tabassum Abbasi ◽  
Tasneem Abbasi ◽  
Chirchom Luithui ◽  
Shahid Abbas Abbasi

Paddy fields, which are shallow man-made wetlands, are estimated to be responsible for ~11% of the total methane emissions attributed to anthropogenic sources. The role of water use in driving these emissions, and the apportioning of the emissions to individual countries engaged in paddy cultivation, are aspects that have been mired in controversy and disagreement. This is largely due to the fact that methane (CH4) emissions not only change with the cultivar type but also regions, climate, soil type, soil conditions, manner of irrigation, type and quantity of fertilizer added—to name a few. The factors which can influence these aspects also encompass a wide range, and have origins in causes which can be physical, chemical, biological, and combinations of these. Exceedingly complex feedback mechanisms, exerting different magnitudes and types of influences on CH4 emissions under different conditions, are operative. Similar is the case of nitrous oxide (N2O); indeed, the present level of understanding of the factors which influence the quantum of its emission is still more patchy. This makes it difficult to even understand precisely the role of the myriad factors, less so model them. The challenge is made even more daunting by the fact that accurate and precise data on most of these aspects is lacking. This makes it nearly impossible to develop analytical models linking causes with effects vis a vis CH4 and N2O emissions from paddy fields. For situations like this the bioinspired artificial intelligence technique of artificial neural network (ANN), which can model a phenomenon on the basis of past data and without the explicit understanding of the mechanism phenomena, may prove useful. However, no such model for CH4 or N2O has been developed so far. Hence the present work was undertaken. It describes ANN-based models developed by us to predict CH4 and N2O emissions using soil characteristics, fertilizer inputs, and rice cultivar yield as inputs. Upon testing the predictive ability of the models with sets of data not used in model development, it was seen that there was excellent agreement between model forecasts and experimental findings, leading to correlations coefficients of 0.991 and 0.96, and root mean square error (RMSE) of 11.17 and 261.3, respectively, for CH4 and N2O emissions. Thus, the models can be used to estimate CH4 and N2O emissions from all those continuously flooded paddy wetlands for which data on total organic carbon, soil electrical conductivity, applied nitrogen, phosphorous and potassium, NPK, and grain yield is available.


2019 ◽  
Vol 116 (26) ◽  
pp. 12822-12827 ◽  
Author(s):  
Lin Zhang ◽  
Anja Wüst ◽  
Benedikt Prasser ◽  
Christoph Müller ◽  
Oliver Einsle

The multicopper enzyme nitrous oxide reductase reduces the greenhouse gas N2O to uncritical N2as the final step of bacterial denitrification. Its two metal centers require an elaborate assembly machinery that so far has precluded heterologous production as a prerequisite for bioremediatory applications in agriculture and wastewater treatment. Here, we report on the production of active holoenzyme inEscherichia coliusing a two-plasmid system to produce the entire biosynthetic machinery as well as the structural gene for the enzyme. Using this recombinant system to probe the role of individual maturation factors, we find that the ABC transporter NosFY and the accessory NosD protein are essential for the formation of the [4Cu:2S] site CuZ, but not the electron transfer site CuA. Depending on source organism, the heterologous hostE. colican, in some cases, compensate for the lack of the Cu chaperone NosL, while in others this protein is strictly required, underlining the case for designing a recombinant system to be entirely self-contained.


Sign in / Sign up

Export Citation Format

Share Document