scholarly journals Substrate Interactions during the Biodegradation of Benzene, Toluene, Ethylbenzene, and Xylene (BTEX) Hydrocarbons by the Fungus Cladophialophora sp. Strain T1

2002 ◽  
Vol 68 (6) ◽  
pp. 2660-2665 ◽  
Author(s):  
F. X. Prenafeta-Boldú ◽  
J. Vervoort ◽  
J. T. C. Grotenhuis ◽  
J. W. van Groenestijn

ABSTRACT The soil fungus Cladophialophora sp. strain T1 (= ATCC MYA-2335) was capable of growth on a model water-soluble fraction of gasoline that contained all six BTEX components (benzene, toluene, ethylbenzene, and the xylene isomers). Benzene was not metabolized, but the alkylated benzenes (toluene, ethylbenzene, and xylenes) were degraded by a combination of assimilation and cometabolism. Toluene and ethylbenzene were used as sources of carbon and energy, whereas the xylenes were cometabolized to different extents. o-Xylene and m-xylene were converted to phthalates as end metabolites; p-xylene was not degraded in complex BTEX mixtures but, in combination with toluene, appeared to be mineralized. The metabolic profiles and the inhibitory nature of the substrate interactions indicated that toluene, ethylbenzene, and xylene were degraded at the side chain by the same monooxygenase enzyme. Our findings suggest that soil fungi could contribute significantly to bioremediation of BTEX pollution.

Author(s):  
D.R. Mattie ◽  
J.W. Fisher

Jet fuels such as JP-4 can be introduced into the environment and come in contact with aquatic biota in several ways. Studies in this laboratory have demonstrated JP-4 toxicity to fish. Benzene is the major constituent of the water soluble fraction of JP-4. The normal surface morphology of bluegill olfactory lamellae was examined in conjunction with electrophysiology experiments. There was no information regarding the ultrastructural and physiological responses of the olfactory epithelium of bluegills to acute benzene exposure.The purpose of this investigation was to determine the effects of benzene on the surface morphology of the nasal rosettes of the bluegill sunfish (Lepomis macrochirus). Bluegills were exposed to a sublethal concentration of 7.7±0.2ppm (+S.E.M.) benzene for five, ten or fourteen days. Nasal rosettes were fixed in 2.5% glutaraldehyde and 2.0% paraformaldehyde in 0.1M cacodylate buffer (pH 7.4) containing 1.25mM calcium chloride. Specimens were processed for scanning electron microscopy.


2014 ◽  
Vol 91 (5) ◽  
pp. 473-481 ◽  
Author(s):  
Guiai Jiao ◽  
Xiangjin Wei ◽  
Gaoneng Shao ◽  
Lihong Xie ◽  
Zhonghua Sheng ◽  
...  

1957 ◽  
Vol 35 (4) ◽  
pp. 241-250 ◽  
Author(s):  
W. G. Martin ◽  
J. E. Vandegaer ◽  
W. H. Cook

Livetin, the major water-soluble protein of hen egg yolk, was found to contain three major components having mobilities of −6.3, −3.8, and −2.1 cm.2 sec.−1 volt−1 at pH 8, µ 0.1, and these have been designated α-, β-, and γ-livetin respectively. The α- and β-livetins were separated and purified electrophoretically after removal of γ-livetin by precipitation from 37% saturated ammonium sulphate or 20% isopropanol. The α-, β-, and mixed livetins resembled pseudoglobulins in solubility but γ-livetin was unstable and this loss of solubility has, so far, prevented its characterization. Molecular weights determined by light scattering, osmotic pressure, and Archibald sedimentation procedure yielded respectively: 8.7, 7.8, and 6.7 × 104 for α-livetin, and 4.8, 5.0, and4.5 × 104 for β-livetin. Under suitable conditions of sedimentation and electrophoresis, egg yolk has been shown to contain three components having the same behavior as the three livetins of the water-soluble fraction.


2001 ◽  
Vol 68 (4) ◽  
pp. 653-661 ◽  
Author(s):  
PABLO SEBASTIÁN RIMADA ◽  
ANALÍA GRACIELA ABRAHAM

Fermentation of deproteinised whey with kefir grains CIDCA AGK1 was studied focusing on polysaccharide production from lactose. Kefir grains were able to acidify whey at different rates depending on the grain/whey ratio. During fermentation, kefir grains increased their weight and a water-soluble polysaccharide was released to the media. Exopolysaccharide concentration increased with fermentation time, reaching values of 57·2 and 103·4 mg/l after 5 days of fermentation in cultures with 10 and 100 g kefir grains/l, respectively. The polysaccharide fraction quantified after fermentation corresponded to the soluble fraction, because part of the polysaccharide became a component of the grain. Weight of kefir grains varied depending on the time of fermentation. Polysaccharide production was affected by temperature. Although the highest concentration of polysaccharide in the media was observed at 43 °C at both grain/whey ratios, the weight of the grains decreased in these conditions. In conclusion, kefir grains were able to acidify deproteinised whey, reducing lactose concentration, increasing their weight and producing a soluble polysaccharide.


RSC Advances ◽  
2015 ◽  
Vol 5 (116) ◽  
pp. 96189-96193 ◽  
Author(s):  
Markus Bender ◽  
Kai Seehafer ◽  
Marlene Findt ◽  
Uwe H. F. Bunz

We report the Pd-catalyzed synthesis of six new water soluble, alternating poly(p-phenylene-ethynylene-p-pyridinylene-ethynylene) (abcb-alternating) copolymers and one poly(p-pyridinyleneethynylene).


Sign in / Sign up

Export Citation Format

Share Document