scholarly journals Isolation and Characterization of NaCl-Sensitive Mutants of Caulobacter crescentus

2003 ◽  
Vol 69 (6) ◽  
pp. 3029-3035 ◽  
Author(s):  
Luiz Fernando G. Zuleta ◽  
Val�ria C. S. Italiani ◽  
Marilis V. Marques

ABSTRACT An attempt to characterize Caulobacter crescentus genes important for the response to high concentrations of NaCl was initiated by the isolation of mutants defective in survival in the presence of 85 mM NaCl. A transposon Tn5 library was screened, and five strains which contained different genes disrupted by the transposon were isolated. Three of the mutants had the Tn5 in genes involved in lipopolysaccharide biosynthesis, one had the Tn5 in the nhaA gene, which encodes a Na+/H+ antiporter, and one had the Tn5 in the ppiD gene, which encodes a peptidyl-prolyl cis-trans isomerase. All the mutant strains showed severe growth arrest in the presence of 85 mM NaCl, but only the nhaA mutant showed decreased viability under these conditions. All the mutants except the nhaA mutant showed a slightly reduced viability in the presence of 40 mM KCl, but all the strains showed a more severe reduction in viability in the presence of 150 mM sucrose, suggesting that they are defective in responding to osmotic shock. The promoter regions of each disrupted gene were cloned in lacZ reporter vectors, and the pattern of expression in response to NaCl and sucrose was determined; this showed that both agents induced ppiD and nhaA gene expression but did not induce the other genes. Furthermore, the ppiD gene was not induced by heat shock, indicating that it does not belong to the σ32 regulon, as opposed to what was observed for its Escherichia coli homolog.

2001 ◽  
Vol 183 (10) ◽  
pp. 3204-3210 ◽  
Author(s):  
Melanie J. Barnett ◽  
Dean Y. Hung ◽  
Ann Reisenauer ◽  
Lucy Shapiro ◽  
Sharon R. Long

ABSTRACT During development of the symbiotic soil bacteriumSinorhizobium meliloti into nitrogen-fixing bacteroids, DNA replication and cell division cease and the cells undergo profound metabolic and morphological changes. Regulatory genes controlling the early stages of this process have not been identified. As a first step in the search for regulators of these events, we report the isolation and characterization of a ctrA gene from S. meliloti. We show that the S. meliloti CtrA belongs to the CtrA-like family of response regulators found in several α-proteobacteria. In Caulobacter crescentus, CtrA is essential and is a global regulator of multiple cell cycle functions.ctrA is also an essential gene in S. meliloti, and it is expressed similarly to the autoregulated C. crescentus ctrA in that both genes have complex promoter regions which bind phosphorylated CtrA.


1985 ◽  
Vol 5 (7) ◽  
pp. 1543-1553 ◽  
Author(s):  
G S Roeder ◽  
C Beard ◽  
M Smith ◽  
S Keranen

The his4-917 mutation of Saccharomyces cerevisiae results from the insertion of the Ty element Ty917 into the regulatory region of the HIS4 gene and renders the cell His-. The hist4-912 delta mutant, which carries a solo delta in the 5'-noncoding region of HIS4, is His+ at 37 degrees C but His- at 23 degrees C. Both these mutations interfere with HIS4 expression at the transcriptional level. The His- phenotype of both insertion mutations is suppressed by mutations at the SPT2 locus. The product of the wild-type SPT2 gene apparently represses HIS4 transcription in these mutant strains; this repression is relieved when the SPT2 gene is destroyed by mutation. The repression of transcription by SPT2 presumably results from an interaction between the SPT2+ gene product and Ty or delta sequences. In this paper, we report the cloning and DNA sequence analysis of the wild-type SPT2 gene and show that the gene is capable of encoding a protein of 333 amino acids in length. In addition, we show that a dominant mutation of the SPT2 gene results from the generation of an ochre codon which is presumed to lead to a shortened SPT2 gene product.


2007 ◽  
Vol 190 (4) ◽  
pp. 1209-1218 ◽  
Author(s):  
Raquel Paes da Rocha ◽  
Apuã César de Miranda Paquola ◽  
Marilis do Valle Marques ◽  
Carlos Frederico Martins Menck ◽  
Rodrigo S. Galhardo

ABSTRACT The SOS regulon is a paradigm of bacterial responses to DNA damage. A wide variety of bacterial species possess homologs of lexA and recA, the central players in the regulation of the SOS circuit. Nevertheless, the genes actually regulated by the SOS have been determined only experimentally in a few bacterial species. In this work, we describe 37 genes regulated in a LexA-dependent manner in the alphaproteobacterium Caulobacter crescentus. In agreement with previous results, we have found that the direct repeat GTTCN7GTTC is the SOS operator of C. crescentus, which was confirmed by site-directed mutagenesis studies of the imuA promoter. Several potential promoter regions containing the SOS operator were identified in the genome, and the expression of the corresponding genes was analyzed for both the wild type and the lexA strain, demonstrating that the vast majority of these genes are indeed SOS regulated. Interestingly, many of these genes encode proteins with unknown functions, revealing the potential of this approach for the discovery of novel genes involved in cellular responses to DNA damage in prokaryotes, and illustrating the diversity of SOS-regulated genes among different bacterial species.


2017 ◽  
Vol 61 (10) ◽  
Author(s):  
Matthew B. McNeil ◽  
Devon D. Dennison ◽  
Catherine D. Shelton ◽  
Tanya Parish

ABSTRACT Oxazolidinones are promising candidates for the treatment of Mycobacterium tuberculosis infections. We isolated linezolid-resistant strains from H37Rv (Euro-American) and HN878 (East-Asian) strains; resistance frequencies were similar in the two strains. Mutations were identified in ribosomal protein L3 (RplC) and the 23S rRNA (rrl). All mutant strains were cross resistant to sutezolid; a subset was cross resistant to chloramphenicol. Mutations in rrl led to growth impairment and decreased fitness that may limit spread in clinical settings.


2020 ◽  
Vol 8 (11) ◽  
pp. 1750
Author(s):  
Chun Li ◽  
Xiaoming Yuan ◽  
Na Li ◽  
Juan Wang ◽  
Shubo Yu ◽  
...  

Bacillus phage φ29 and its relatives have been considered as one of the most important model organisms for DNA replication, transcription, morphogenesis, DNA packaging studies, and nanotechnology applications. Here, we isolated and characterized a new member of the φ29-like phage, named Bacillus cereus phage vB_BceP-DLc1. This phage, with a unique inserted gene cluster, has the largest genome among known φ29-like phages. DLc1 can use the surface carbohydrate structures of the host cell as receptors and only infects the most related B. cereus strains, showing high host-specificity. The adsorption rate constant and life cycle of DLc1 under experimental conditions were also determined. Not only stable under temperatures below 55 °C and pH range from 5 to 11, the new phage also showed tolerance to high concentrations of NaCl, 75% ethanol, chloroform, and mechanical vortex, which is preferable for practical use in the food and pharmaceutical industries.


Virology ◽  
1976 ◽  
Vol 73 (2) ◽  
pp. 461-467 ◽  
Author(s):  
Kazuko Miyakawa ◽  
Akio Fukuda ◽  
Yoshimi Okada ◽  
Kohsuke Furuse ◽  
Itaru Watanabe

Sign in / Sign up

Export Citation Format

Share Document