scholarly journals Redox Interactions between Saccharomyces cerevisiae and Saccharomyces uvarum in Mixed Culture under Enological Conditions

2005 ◽  
Vol 71 (1) ◽  
pp. 255-260 ◽  
Author(s):  
Naoufel Cheraiti ◽  
St�phane Guezenec ◽  
Jean-Michel Salmon

ABSTRACT Wine yeast starters that contain a mixture of different industrial yeasts with various properties may soon be introduced to the market. The mechanisms underlying the interactions between the different strains in the starter during alcoholic fermentation have never been investigated. We identified and investigated some of these interactions in a mixed culture containing two yeast strains grown under enological conditions. The inoculum contained the same amount (each) of a strain of Saccharomyces cerevisiae and a natural hybrid strain of S. cerevisiae and Saccharomyces uvarum. We identified interactions that affected biomass, by-product formation, and fermentation kinetics, and compared the redox ratios of monocultures of each strain with that of the mixed culture. The redox status of the mixed culture differed from that of the two monocultures, showing that the interactions between the yeast strains involved the diffusion of metabolite(s) within the mixed culture. Since acetaldehyde is a potential effector of fermentation, we investigated the kinetics of acetaldehyde production by the different cultures. The S. cerevisiae-S. uvarum hybrid strain produced large amounts of acetaldehyde for which the S. cerevisiae strain acted as a receiving strain in the mixed culture. Since yeast response to acetaldehyde involves the same mechanisms that participate in the response to other forms of stress, the acetaldehyde exchange between the two strains could play an important role in inhibiting some yeast strains and allowing the growth of others. Such interactions could be of particular importance in understanding the ecology of the colonization of complex fermentation media by S. cerevisiae.

2016 ◽  
Vol 81 (13) ◽  
pp. 1650-1668 ◽  
Author(s):  
M. A. Eldarov ◽  
S. A. Kishkovskaia ◽  
T. N. Tanaschuk ◽  
A. V. Mardanov

2009 ◽  
Vol 75 (20) ◽  
pp. 6600-6612 ◽  
Author(s):  
Debra Rossouw ◽  
Roberto Olivares-Hernandes ◽  
Jens Nielsen ◽  
Florian F. Bauer

ABSTRACT Commercial wine yeast strains of the species Saccharomyces cerevisiae have been selected to satisfy many different, and sometimes highly specific, oenological requirements. As a consequence, more than 200 different strains with significantly diverging phenotypic traits are produced globally. This genetic resource has been rather neglected by the scientific community because industrial strains are less easily manipulated than the limited number of laboratory strains that have been successfully employed to investigate fundamental aspects of cellular biology. However, laboratory strains are unsuitable for the study of many phenotypes that are of significant scientific and industrial interest. Here, we investigate whether a comparative transcriptomics and phenomics approach, based on the analysis of five phenotypically diverging industrial wine yeast strains, can provide insights into the molecular networks that are responsible for the expression of such phenotypes. For this purpose, some oenologically relevant phenotypes, including resistance to various stresses, cell wall properties, and metabolite production of these strains were evaluated and aligned with transcriptomic data collected during alcoholic fermentation. The data reveal significant differences in gene regulation between the five strains. While the genetic complexity underlying the various successive stress responses in a dynamic system such as wine fermentation reveals the limits of the approach, many of the relevant differences in gene expression can be linked to specific phenotypic differences between the strains. This is, in particular, the case for many aspects of metabolic regulation. The comparative approach therefore opens new possibilities to investigate complex phenotypic traits on a molecular level.


1999 ◽  
Vol 45 (4) ◽  
pp. 343-346 ◽  
Author(s):  
C Tamayo ◽  
J Ubeda ◽  
A Briones

Hydrogen sulphide formation is a problem in winemaking. One of the factors affecting formation of this unwanted metabolite is the yeast strain responsible for the process. In this experiment wines were made on a laboratory scale with different strains of H2S-producing Saccharomyces cerevisiae. The relationship between H2S production and various fermentation conditions was examined (SO2, methionine, (NH4)2SO4, (NH4)3PO4, steel, and steel-lees). The results show that in fermentations in the presence of stainless steel and lees, H2S formation is high but declines when (NH4)3PO4is added to the must.Key words: H2S formation, wine-yeast, steel-lees, wine-making, alcoholic fermentation.


1984 ◽  
Vol 4 (11) ◽  
pp. 2509-2517
Author(s):  
H Horowitz ◽  
P Thorburn ◽  
J E Haber

We have examined the mitotic and meiotic properties of telomeric regions in various laboratory strains of yeast. Using a sequence (Y probe) derived from a cloned yeast telomere (J. Szostak and E. Blackburn, Cell 29:245-255, 1982), we found that various strains of Saccharomyces cerevisiae show extensive polymorphisms of restriction endonuclease fragment length. Some of the variation in the lengths of telomeric fragments appears to be under the control of a small number of genes. When DNA from various strains was digested with endonuclease KpnI, nearly all of the fragments homologous to the Y probe were found to be of different size. The pattern of fragments in different strains was extremely variable, with a greater degree of polymorphism than that observed for fragments containing the mobile TY1 element. Tetrad analysis of haploid meiotic segregants from diploids heterozygous for many different Y-homologous KpnI fragments revealed that most of them exhibited Mendelian (2:0) segregation. However, only a small proportion of these fragments displayed the obligate 2:2 parental segregation expected of simple allelic variants at the same chromosome end. From the segregations of these fragments, we concluded that some yeast telomeres lack a Y-homologous sequence and that the chromosome arms containing a Y-homologous sequence are different among various yeast strains. Regions near yeast telomeres frequently undergo rearrangement. Among eight tetrads from three different diploids, we have found three novel Y-homologous restriction fragments that appear to have arisen during meiosis. In all three cases, the appearance of a new fragment was accompanied by the loss of another band. In one of these cases, the rearrangement leading to a novel fragment arose in an isogenic diploid, in which both homologous chromosomes should have been identical. Among these same tetrads we also found examples of apparent mitotic gene conversions and mitotic recombination involving telemetric regions.


1999 ◽  
Vol 65 (1) ◽  
pp. 143-149 ◽  
Author(s):  
F. Remize ◽  
J. L. Roustan ◽  
J. M. Sablayrolles ◽  
P. Barre ◽  
S. Dequin

ABSTRACT Six commercial wine yeast strains and three nonindustrial strains (two laboratory strains and one haploid strain derived from a wine yeast strain) were engineered to produce large amounts of glycerol with a lower ethanol yield. Overexpression of the GPD1 gene, encoding a glycerol-3-phosphate dehydrogenase, resulted in a 1.5- to 2.5-fold increase in glycerol production and a slight decrease in ethanol formation under conditions simulating wine fermentation. All the strains overexpressing GPD1 produced a larger amount of succinate and acetate, with marked differences in the level of these compounds between industrial and nonindustrial engineered strains. Acetoin and 2,3-butanediol formation was enhanced with significant variation between strains and in relation to the level of glycerol produced. Wine strains overproducing glycerol at moderate levels (12 to 18 g/liter) reduced acetoin almost completely to 2,3-butanediol. A lower biomass concentration was attained byGPD1-overexpressing strains, probably due to high acetaldehyde production during the growth phase. Despite the reduction in cell numbers, complete sugar exhaustion was achieved during fermentation in a sugar-rich medium. Surprisingly, the engineered wine yeast strains exhibited a significant increase in the fermentation rate in the stationary phase, which reduced the time of fermentation.


Molecules ◽  
2019 ◽  
Vol 24 (17) ◽  
pp. 3185 ◽  
Author(s):  
Łużny ◽  
Krzywda ◽  
Kozłowska ◽  
Kostrzewa-Susłow ◽  
Janeczko

Biotransformations were performed on eight selected yeast strains, all of which were able to selectively hydrogenate the chalcone derivatives 3-(2”-furyl)- (1) and 3-(2”-thienyl)-1-(2’-hydroxyphenyl)-prop-2-en-1-one (3) into 3-(2”-furyl)- (2) and 3-(2”-thienyl)-1-(2’-hydroxyphenyl)-propan-1-one (4) respectively. The highest efficiency of hydrogenation of the double bond in the substrate 1 was observed in the cultures of Saccharomyces cerevisiae KCh 464 and Yarrowia lipolytica KCh 71 strains. The substrate was converted into the product with > 99% conversion just in six hours after biotransformation started. The compound containing the sulfur atom in its structure was most effectively transformed by the Yarrowia lipolytica KCh 71 culture strain (conversion > 99%, obtained after three hours of substrate incubation). Also, we observed that, different strains of tested yeasts are able to carry out the bioreduction of the used substrate with different yields, depending on the presence of induced and constitutive ene reductases in their cells. The biggest advantage of this process is the efficient production of one product, practically without the formation of side products.


2018 ◽  
Vol 6 (5) ◽  
Author(s):  
Andrey V. Mardanov ◽  
Alexey V. Beletsky ◽  
Mikhail A. Eldarov ◽  
Tatiana N. Tanashchuk ◽  
Svetlana A. Kishkovskaya ◽  
...  

ABSTRACT Saccharomyces cerevisiae I-328 is a yeast strain used for production of sherry-like wine in Russia. Here we report the draft genome sequence of this strain, which will facilitate comparative genomic studies of yeast strains used for winemaking.


Sign in / Sign up

Export Citation Format

Share Document