scholarly journals Structure of Sediment-Associated Microbial Communities along a Heavy-Metal Contamination Gradient in the Marine Environment

2005 ◽  
Vol 71 (2) ◽  
pp. 679-690 ◽  
Author(s):  
David C. Gillan ◽  
Bruno Danis ◽  
Philippe Pernet ◽  
Guillemette Joly ◽  
Philippe Dubois

ABSTRACT Microbial community composition and structure were characterized in marine sediments contaminated for >80 years with cadmium, copper, lead, and zinc. Four sampling sites that encompass a wide range of sediment metal loads were compared in a Norwegian fjord (Sørfjord). HCl-extractable metals and organic matter constantly decreased from the most contaminated site (S1) to the control site (S4). All sampling sites presented low polychlorinated biphenyl (PCB) concentrations (Σ7PCB < 7.0 ng g [dry weight]−1). The biomass ranged from 4.3 × 108 to 13.4 × 108 cells g (dry weight) of sediments−1 and was not correlated to metal levels. Denaturing gradient gel electrophoresis indicated that diversity was not affected by the contamination. The majority of the partial 16S rRNA sequences obtained were classified in the γ- and δ-Proteobacteria and in the Cytophaga-Flexibacter-Bacteroides (CFB) bacteria. Some sequences were closely related to other sequences from polluted marine sediments. The abundances of seven phylogenetic groups were determined by using fluorescent in situ hybridization (FISH). FISH was impaired in S1 by high levels of autofluorescing particles. For S2 to S4, the results indicated that the HCl-extractable Cu, Pb, and Zn were negatively correlated with the abundance of γ-Proteobacteria and CFB bacteria. δ-Proteobacteria were not correlated with HCl-extractable metals. Bacteria of the Desulfosarcina-Desulfococcus group were detected in every site and represented 6 to 14% of the DAPI (4′,6′-diamidino-2-phenylindole) counts. Although factors other than metals may explain the distribution observed, the information presented here may be useful in predicting long-term effects of heavy-metal contamination in the marine environment.

2017 ◽  
Vol 121 (1-2) ◽  
pp. 418-424 ◽  
Author(s):  
N. Harikrishnan ◽  
R. Ravisankar ◽  
A. Chandrasekaran ◽  
M. Suresh Gandhi ◽  
K.V. Kanagasabapathy ◽  
...  

2021 ◽  
Vol 25 (4) ◽  
pp. 609-613
Author(s):  
S.O. Agbo ◽  
M.A. Mustapha ◽  
C.E. Ogaugwu ◽  
O.G. Sodipe ◽  
E.C. Chukwu ◽  
...  

Excavation and processing of mineral deposits are valuable revenue sources yet they contribute serious environmental problems worldwide. Mining activities are widespread and contribute to heavy metal contamination in rural communities in Ekiti State, Nigeria. Available research failed to establish how mining soil may impact on resident terrestrial organisms. This study assessed the health of soil from active mining site by testing it on earthworms (Eisenia fetida) for 10 weeks. Survival, mobility, morphology and behaviour of worms were assessed while soil was analyzed for selected heavy metals by atomic absorption spectrometry. Worm survival was evident as the proportion of reference soil increased in exposure mixture and improved until 92% in the control. Worms curled up at the bottom of test vessels with varying proportions of mining site soil and appeared discolored and dehydrated when taken out of test soil, with characteristic sluggishness, particularly as the proportion of mining soil increased in exposure mixtures. Though metal levels were within permissible limits, morphology of exposed worms were visibly impacted, which corresponds in severity with increasing proportion of mining soil. On the contrary, worms tested in 100% reference soil appeared healthy and active in upper part of exposure vessels. These results suggest that the tested mining soil had adverse impacts on mobility, morphology, behavior and survival of exposed organisms when compared with the control population. Therefore, food products grown downstream of the mining site may be at risk of heavy metal contamination with consequences on food quality, water quality and food chain.


2008 ◽  
Vol 399 (1-3) ◽  
pp. 179-185 ◽  
Author(s):  
Xuebin Yin ◽  
Lijun Xia ◽  
Liguang Sun ◽  
Honghao Luo ◽  
Yuhong Wang

2021 ◽  
Vol 9 (2) ◽  
pp. 362 ◽  
Author(s):  
Wen-Jing Gong ◽  
Zi-Fan Niu ◽  
Xing-Run Wang ◽  
He-Ping Zhao

The effects of long-term heavy metal contamination on the soil biological processes and soil microbial communities were investigated in a typical electroplating site in Zhangjiakou, China. It was found that the soil of the electroplating plant at Zhangjiakou were heavily polluted by Cr, Cr (VI), Ni, Cu, and Zn, with concentrations ranged from 112.8 to 9727.2, 0 to 1083.3, 15.6 to 58.4, 10.8 to 510.0 and 69.6 to 631.6 mg/kg, respectively. Soil urease and phosphatase activities were significantly inhibited by the heavy metal contamination, while the microbial biomass carbon content and the bacterial community richness were much lower compared to noncontaminated samples, suggesting that the long-term heavy metal contamination had a severe negative effect on soil microorganisms. Differently, soil dehydrogenase was promoted in the presence of Chromate compared to noncontaminated samples. This might be due to the enrichment of Sphingomonadaceae, which have been proven to be able to secrete dehydrogenase. The high-throughput sequencing of the 16S rRNA gene documented that Proteobacteria, Actinobacteria, and Chloroflexi were the dominant bacterial phyla in the contaminated soil. The Spearman correlation analysis showed the Methylobacillus, Muribaculaceae, and Sphingomonadaceae were able to tolerate high concentrations of Cr, Cr (VI), Cu, and Zn, indicating their potential in soil remediation.


2011 ◽  
Vol 92 (2) ◽  
pp. 297-306 ◽  
Author(s):  
Takahiro Hosono ◽  
Chih-Chieh Su ◽  
Robert Delinom ◽  
Yu Umezawa ◽  
Tomoyo Toyota ◽  
...  

2011 ◽  
Vol 414 ◽  
pp. 5-15
Author(s):  
Xiao Nan Sun ◽  
Xiu Rong Chen ◽  
An Ping Liu ◽  
Shi Ming Lv ◽  
Xing Xing Yao

On the basis of investigation of specific heavy metals contaminated site, use compound heavy metal hazard quotients to do a assessment for potential health risk. The primarily detected excessive heavy metals are Zn, Gr, Cu and Hg. Results indicate that: in the surface (0~30 cm) and subsurface (30~70 cm), the compound heavy metal hazard quotients of sampling point 7#, 12#, 13# 6#, 7#, 12#, and 13# are greater than 1, and soil exists heavy metal contamination; in 70cm~100cm soil layer, the hazard quotients of all monitoring points are less than 1, therefore in these layers soil is not contaminated, and there are no need for remediation. The result reflects compound heavy metal contamination directly, and provides a reference for later remediation work.


Author(s):  
Louisa F. Steingräber ◽  
Catharina Ludolphy ◽  
Johannes Metz ◽  
Lars Germershausen ◽  
Horst Kierdorf ◽  
...  

AbstractWe studied heavy metal levels in floodplain soils of the Innerste River in northern Germany and in the leaves of wild blackberries (Rubus fruticosus L. agg.) growing within and in adjacent areas outside the river floodplain. Heavy metal contamination of the Innerste floodplain is a legacy of historical metal ore mining, processing, and smelting in the Harz Mountains. The heavy metal (Cd, Pb, Zn, Cu, Ni, and Cr) contents of previously studied soil samples from eleven floodplain sites along the Innerste River were re-analyzed statistically, and the levels of these metals in blackberry leaves were determined at five sites. Mean concentrations in the floodplain soils were elevated by factors of 4.59 to 28.5 for Cd, 13.03 to 158.21 for Pb, 5.66 to 45.83 for Zn, and 1.1–14.81 for Cu relative to the precautionary limits for soils stipulated by the German Federal Soil Protection and Contaminated Sites Ordinance. Cadmium, Pb, Zn, Cu, and Ni levels in floodplain soils decreased markedly downstream, as did the concentrations of Cd, Zn, and Ni in the leaves of blackberries from within the floodplain. Levels of Cd, Pb, and Zn in leaves of blackberries from within the floodplain significantly exceeded those of specimens from outside the floodplain. The findings of our study highlight the potential of wild blackberry as a biomonitor of soil pollution by Cd, Pb, and Zn and corroborate the massive heavy metal contamination of floodplain soils along the Innerste River observed in previous studies.


Sign in / Sign up

Export Citation Format

Share Document