scholarly journals Development and Assessment of a Real-Time PCR Assay for Rapid and Sensitive Detection of a Novel Thermotolerant Bacterium, Lactobacillus thermotolerans, in Chicken Feces

2005 ◽  
Vol 71 (8) ◽  
pp. 4214-4219 ◽  
Author(s):  
Abu Sadeque Md Selim ◽  
Piyanuch Boonkumklao ◽  
Teruo Sone ◽  
Apinya Assavanig ◽  
Masaru Wada ◽  
...  

ABSTRACT A new real-time PCR assay was successfully developed using a TaqMan fluorescence probe for specific detection and enumeration of a novel bacterium, Lactobacillus thermotolerans, in chicken feces. The specific primers and probe were designed based on the L. thermotolerans 16S rRNA gene sequences, and these sequences were compared to those of all available 16S rRNA genes in the GenBank database. The assay, targeting 16S rRNA gene, was evaluated using DNA from a pure culture of L. thermotolerans, DNA from the closely related bacteria Lactobacillus mucosae DSM 13345T and Lactobacillus fermentum JCM 1173T, and DNA from other lactic acid bacteria in quantitative experiments. Serial dilutions of L. thermotolerans DNA were used as external standards for calibration. The minimum detection limit of this technique was 1.84 × 103 cells/ml of an L. thermotolerans pure culture. The assay was then applied to chicken feces in two different trials. In the first trial, the cell population was 104 cells/g feces on day 4 and 105 cells/g feces on days 11 to 18. However, cell populations of 106 to 107 cells/g feces were detected in the second trial. The total bacterial count, measured by 4′,6-diamidino-2-phenylindole (DAPI) staining, was approximately 1011 cells/g feces. These results suggest that in general, L. thermotolerans is a normal member of the chicken gut microbiota, although it is present at relatively low levels in the feces.

2003 ◽  
Vol 69 (11) ◽  
pp. 6597-6604 ◽  
Author(s):  
Hebe M. Dionisi ◽  
Gerda Harms ◽  
Alice C. Layton ◽  
Igrid R. Gregory ◽  
Jack Parker ◽  
...  

ABSTRACT The aims of this study were to determine the power of discrimination of the real-time PCR assay for monitoring fluctuations in microbial populations within activated sludge and to identify sample processing points where methodological changes are needed to minimize the variability in target quantification. DNA was extracted using a commercially available kit from mixed liquor samples taken from the aeration tank of four bench-scale activated-sludge reactors operating at 2-, 5-, 10-, and 20-day solid retention times, with mixed-liquor volatile suspended solid (MLVSS) values ranging from 260 to 2,610 mg/liter. Real-time PCR assays for bacterial and Nitrospira 16S rRNA genes were chosen because they represent, respectively, a highly abundant and a less-abundant bacterial target subject to clustering within the activated sludge matrix. The mean coefficient of variation in DNA yields (measured as microgram of DNA per milligram of MLVSS) in triplicate extractions of 12 different samples was 12.2%. Based on power analyses, the variability associated with DNA extraction had a small impact on the overall variability of the real-time PCR assay. Instead, a larger variability was associated with the PCR assay. The less-abundant target (Nitrospira 16S rRNA gene) had more variability than the highly abundant target (bacterial 16S rRNA gene), and samples from the lower-biomass reactors had more variability than samples from the higher-biomass reactors. Power analysis of real-time PCR assays indicated that three to five samples were necessary to detect a twofold increase in bacterial 16S rRNA genes, whereas three to five samples were required to detect a fivefold increase in Nitrospira 16S rRNA genes.


2004 ◽  
Vol 70 (8) ◽  
pp. 4971-4979 ◽  
Author(s):  
Matthias Labrenz ◽  
Ingrid Brettar ◽  
Richard Christen ◽  
Sebastien Flavier ◽  
Julia Bötel ◽  
...  

ABSTRACT We have developed a highly sensitive approach to assess the abundance of uncultured bacteria in water samples from the central Baltic Sea by using a noncultured member of the “Epsilonproteobacteria” related to Thiomicrospira denitrificans as an example. Environmental seawater samples and samples enriched for the target taxon provided a unique opportunity to test the approach over a broad range of abundances. The approach is based on a combination of taxon- and domain-specific real-time PCR measurements determining the relative T. denitrificans-like 16S rRNA gene and 16S rRNA abundances, as well as the determination of total cell counts and environmental RNA content. It allowed quantification of T. denitrificans-like 16S rRNA molecules or 16S rRNA genes as well as calculation of the number of ribosomes per T. denitrificans-like cell. Every real-time measurement and its specific primer system were calibrated using environmental nucleic acids obtained from the original habitat for external standardization. These standards, as well as the respective samples to be measured, were prepared from the same DNA or RNA extract. Enrichment samples could be analyzed directly, whereas environmental templates had to be preamplified with general bacterial primers before quantification. Preamplification increased the sensitivity of the assay by more than 4 orders of magnitude. Quantification of enrichments with or without a preamplification step yielded comparable results. T. denitrificans-like 16S rRNA molecules ranged from 7.1 × 103 to 4.4 × 109 copies ml−1 or 0.002 to 49.7% relative abundance. T. denitrificans-like 16S rRNA genes ranged from 9.0 × 101 to 2.2 ×106 copies ml−1 or 0.01 to 49.7% relative abundance. Detection limits of this real-time-PCR approach were 20 16S rRNA molecules or 0.2 16S rRNA gene ml−1. The number of ribosomes per T. denitrificans-like cell was estimated to range from 20 to 200 in seawater and reached up to 2,000 in the enrichments. The results indicate that our real-time PCR approach can be used to determine cellular and relative abundances of uncultured marine bacterial taxa and to provide information about their levels of activity in their natural environment.


2005 ◽  
Vol 49 (8) ◽  
pp. 3166-3170 ◽  
Author(s):  
Erik Glocker ◽  
Marco Berning ◽  
Monique M. Gerrits ◽  
Johannes G. Kusters ◽  
Manfred Kist

ABSTRACT The effectiveness of recommended first-line therapies for Helicobacter pylori infections is decreasing due to the occurrence of resistance to metronidazole and/or clarithromycin. Quadruple therapies, which include tetracycline and a bismuth salt, are useful alternative regimens. However, resistance to tetracycline, mainly caused by mutations in the 16S rRNA genes (rrnA and rrnB) affecting nucleotides 926 to 928, are already emerging and can impair the efficacies of such second-line regimens. Here, we describe a novel real-time PCR for the detection of 16S rRNA gene mutations associated with tetracycline resistance. Our PCR method was able to distinguish between wild-type strains and resistant strains exhibiting single-, double, or triple-base-pair mutations. The method was applicable both to DNA extracted from pure cultures and to DNA extracted from fresh or frozen H. pylori-infected gastric biopsy samples. We therefore conclude that this real-time PCR is an excellent method for determination of H. pylori tetracycline resistance even when live bacteria are no longer available.


2008 ◽  
Vol 14 (5) ◽  
pp. 480-486 ◽  
Author(s):  
C. Schabereiter-Gurtner ◽  
P. Hufnagl ◽  
G. Sonvilla ◽  
B. Selitsch ◽  
M.L. Rotter ◽  
...  

2015 ◽  
Vol 41 (1) ◽  
pp. 51-58
Author(s):  
Mohammad Shamimul Alam ◽  
Hawa Jahan ◽  
Rowshan Ara Begum ◽  
Reza M Shahjahan

Heteropneustesfossilis, Clariasbatrachus and C. gariepinus are three major catfishes ofecological and economic importance. Identification of these fish species becomes aproblem when the usual external morphological features of the fish are lost or removed,such as in canned fish. Also, newly hatched fish larva is often difficult to identify. PCRsequencingprovides accurate alternative means of identification of individuals at specieslevel. So, 16S rRNA genes of three locally collected catfishes were sequenced after PCRamplification and compared with the same gene sequences available from othergeographical regions. Multiple sequence alignment of the 16S rRNA gene fragments ofthe catfish species has revealed polymorphic sites which can be used to differentiate thesethree species from one another and will provide valuable insight in choosing appropriaterestriction enzymes for PCR-RFLP based identification in future. Asiat. Soc. Bangladesh, Sci. 41(1): 51-58, June 2015


2005 ◽  
Vol 71 (10) ◽  
pp. 6308-6318 ◽  
Author(s):  
Helen A. Vrionis ◽  
Robert T. Anderson ◽  
Irene Ortiz-Bernad ◽  
Kathleen R. O'Neill ◽  
Charles T. Resch ◽  
...  

ABSTRACT The geochemistry and microbiology of a uranium-contaminated subsurface environment that had undergone two seasons of acetate addition to stimulate microbial U(VI) reduction was examined. There were distinct horizontal and vertical geochemical gradients that could be attributed in large part to the manner in which acetate was distributed in the aquifer, with more reduction of Fe(III) and sulfate occurring at greater depths and closer to the point of acetate injection. Clone libraries of 16S rRNA genes derived from sediments and groundwater indicated an enrichment of sulfate-reducing bacteria in the order Desulfobacterales in sediment and groundwater samples. These samples were collected nearest the injection gallery where microbially reducible Fe(III) oxides were highly depleted, groundwater sulfate concentrations were low, and increases in acid volatile sulfide were observed in the sediment. Further down-gradient, metal-reducing conditions were present as indicated by intermediate Fe(II)/Fe(total) ratios, lower acid volatile sulfide values, and increased abundance of 16S rRNA gene sequences belonging to the dissimilatory Fe(III)- and U(VI)-reducing family Geobacteraceae. Maximal Fe(III) and U(VI) reduction correlated with maximal recovery of Geobacteraceae 16S rRNA gene sequences in both groundwater and sediment; however, the sites at which these maxima occurred were spatially separated within the aquifer. The substantial microbial and geochemical heterogeneity at this site demonstrates that attempts should be made to deliver acetate in a more uniform manner and that closely spaced sampling intervals, horizontally and vertically, in both sediment and groundwater are necessary in order to obtain a more in-depth understanding of microbial processes and the relative contribution of attached and planktonic populations to in situ uranium bioremediation.


2003 ◽  
Vol 69 (9) ◽  
pp. 5512-5518 ◽  
Author(s):  
Brett J. Baker ◽  
Philip Hugenholtz ◽  
Scott C. Dawson ◽  
Jillian F. Banfield

ABSTRACT During a molecular phylogenetic survey of extremely acidic (pH < 1), metal-rich acid mine drainage habitats in the Richmond Mine at Iron Mountain, Calif., we detected 16S rRNA gene sequences of a novel bacterial group belonging to the order Rickettsiales in the Alphaproteobacteria. The closest known relatives of this group (92% 16S rRNA gene sequence identity) are endosymbionts of the protist Acanthamoeba. Oligonucleotide 16S rRNA probes were designed and used to observe members of this group within acidophilic protists. To improve visualization of eukaryotic populations in the acid mine drainage samples, broad-specificity probes for eukaryotes were redesigned and combined to highlight this component of the acid mine drainage community. Approximately 4% of protists in the acid mine drainage samples contained endosymbionts. Measurements of internal pH of the protists showed that their cytosol is close to neutral, indicating that the endosymbionts may be neutrophilic. The endosymbionts had a conserved 273-nucleotide intervening sequence (IVS) in variable region V1 of their 16S rRNA genes. The IVS does not match any sequence in current databases, but the predicted secondary structure forms well-defined stem loops. IVSs are uncommon in rRNA genes and appear to be confined to bacteria living in close association with eukaryotes. Based on the phylogenetic novelty of the endosymbiont sequences and initial culture-independent characterization, we propose the name “Candidatus Captivus acidiprotistae.” To our knowledge, this is the first report of an endosymbiotic relationship in an extremely acidic habitat.


2009 ◽  
Vol 75 (12) ◽  
pp. 4139-4148 ◽  
Author(s):  
James P. Davis ◽  
Noha H. Youssef ◽  
Mostafa S. Elshahed

ABSTRACT We used a combination of 16S rRNA gene clone library surveys, quantitative PCR (qPCR) analysis, and fluorescent in situ hybridization to investigate the diversity, abundance, and distribution of members of candidate division SR1 in multiple habitats. Using SR1-specific 16S rRNA gene primers, we identified multiple novel SR1 lineages in four different anaerobic environments: sediments from Zodletone Spring, a sulfide- and sulfur-rich spring in southwestern Oklahoma; inner layers of microbial mats obtained from Sperm Pool, a high-temperature, low-pH pool (55°C, pH 2.5) in Yellowstone National Park; fresh bovine ruminal contents; and anaerobic freshwater pond sediments (Duck Pond) in Norman, Oklahoma. qPCR analysis indicated that SR1 members constitute a small fraction (<0.01%) of the microbial communities in Duck Pond and ruminal samples but constitute a significant fraction (11.6 and 48.7%) of the total number of bacterial 16S rRNA genes in Zodletone Spring and the inner layers of Sperm Pool microbial mat samples, respectively. By using SR1-specific fluorescent probes, filamentous cells were identified as the sole SR1 morphotype in all environments examined, with the exception of Sperm Pool, where a second bacillus morphotype was also identified. Using a full-cycle 16S rRNA approach, we show that each of these two morphotypes corresponds to a specific phylogenetic lineage identified in the Sperm Pool clone library. This work greatly expands the intralineage phylogenetic diversity within candidate division SR1 and provides valuable quantification and visualization tools that could be used for investigating the ecological roles, dynamics, and genomics of this as-yet-uncultured bacterial phylum.


Sign in / Sign up

Export Citation Format

Share Document