acid volatile sulfide
Recently Published Documents


TOTAL DOCUMENTS

119
(FIVE YEARS 7)

H-INDEX

34
(FIVE YEARS 1)

2021 ◽  
Vol 8 ◽  
Author(s):  
Hugues Lemonnier ◽  
Florence Royer ◽  
Florian Caradec ◽  
Etienne Lopez ◽  
Clarisse Hubert ◽  
...  

The gill is the organ by which many toxic metals are taken up by crustaceans. Iron is known to precipitate at its surface, a phenomenon recently observed in some tropical aquaculture ponds. The present study uses a field approach to understand better the environmental conditions and ecological processes involved in this deposit. Because shrimp are exposed to reduced products originating from organic waste accumulated in the sediment, spatial variation in pH, redox potential and concentrations of dissolved metals in pore water were investigated in these ponds. Total organic carbon, acid volatile sulfide and pyrite were also analyzed in the solid phase. Fe2+ in pore waters showed high spatial variability between ponds and within the same pond with concentrations up to 1,193 μmol l–1. Behaviors of Fe2+, Mn2+ and Co2+ in pore water were similar. Four geochemical environments were identified, based on their physico-chemical characteristics. Highest concentrations for Fe2+, Mn2+ and Co2+ in sediment pore water occurred in slightly acidic and suboxic conditions. When the sediment became anoxic, the H2S produced reacted with Fe2+ and/or Co2+ to form acid volatile sulfide and pyrite. When pH increased, the concentration of free H2S rose up to 736 μmol l–1. With neutral and suboxic conditions, dissolved metal concentrations could be controlled by their precipitation as oxides and hydroxides. The production of pyrite suggested the existence of a possible process of sediment acidification between two crop periods through the production of sulfuric acid. This acidification could increase with pond age and be the cause of the accumulation of reduced metal after 30 years of aquaculture activity.


2020 ◽  
Vol 47 (1) ◽  
pp. 46 ◽  
Author(s):  
Juan Manuel Cabrera ◽  
Pedro Félix Temporetti ◽  
Fernando Luis Pedrozo

Lake Caviahue, in Patagonia (Argentina), is a very acid water body (Patagonia, Argentina) due to the influx of volcanic fluids. Over the past 18 years, the lake has been progressively alkalinizing and pH is close to the ferric iron precipitation threshold (pH>3,0). Should iron precipitate, wáter and sediment composition will be altered. To set a baseline, trace metal partitioning (Cu, Cd, Cr, Pb, Zn and Mn) was studied for three sediment cores (0 to 16 cm depth) at three sampling stations using a sequential extraction procedure (SEP) and the acid volatile sulfide/simultaneously extracted metals (AVS/SEM) protocol. The total metals content of the sediments ranged between 0 to 408 μg g-1 of dry sediment, with Pb>Cr>Mn>Cu>Zn>Cd. No Cd was measured above the limit of detection. The sediment was richest in Mn and Cr, two non-toxic metals at the pH / Eh combination of the lake basin. Total Pb was at a moderate contamination level although it is associated with the most recalcitrant fraction and therefore has low mobility. The sediment fractions with higher metal content were the oxidizable and residual, the former commonly associated with labile organic matter and pyrite while the latter are related to recalcitrant organic matter and rock forming minerals. In addition, a high correlation was found between Cr, Pb and Mn,thus these metals may be subject to analogous precipitation processes and possibly to co-variation in the volcano effluents. Furthermore, no metals were detected in the exchangeable/carbonates fraction, which is the most labile of all the sediment fractions. The metal content in (SEM) was likewise below the toxicity thresholds of two international sediment quality guidelines and the ratio AVS/SEM was over one, indicative of non-toxicity. Both results indicate that metal mobility in the acidic sediments of lake Caviahue is very low.


Water ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1817 ◽  
Author(s):  
Cheng Liu ◽  
Shiguang Shao ◽  
Lei Zhang ◽  
Yiheng Du ◽  
Kaining Chen ◽  
...  

Sulfur development in water-sediment systems is closely related to eutrophication and harmful algae blooms (HABs). However, the development of sulfur in water-sediment systems during heavy algae accumulation still remains unclear, especially in hyper-eutrophic shallow lakes. In this study, a quarterly field investigation was carried out for a year in the algae accumulated embay area of Lake Taihu, accompanied by a short-term laboratory experiment on algae accumulation. The results show that hydrogen sulfide and methanethiol dominated the volatile sulfur compounds (VSCs) in the water during non-accumulation seasons, whereas the concentrations of dimethyl sulfides increased during heavy algae accumulation, both in the field and the laboratory. An increase in the acid volatile sulfide (AVS) in the surface sediments was also discovered together with the increase in dimethyl sulfides. The depletion of oxygen in the overlying water and sediment–water interface during the heavy algae accumulation and decomposition was found to be closely related to both the increase in VSCs in the overlying water and increase in AVS in the sediment. The increased concentrations of these reductive sulfocompounds might aggravate the eutrophication and HABs and should be given more consideration in future eutrophication control plans for lakes.


Water ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 1308 ◽  
Author(s):  
Long Chen ◽  
Feng Li ◽  
Wenrou Huang ◽  
Zhi Li ◽  
Mingguang Chen

A large fraction of mercury contaminant in the environment is from industrial production, and it potentially impairs human health once entering the food chain. Millions of people reside in the Pearl River Delta region, and water quality in the estuary directly affects their drinking water safety. Considering the highly intense anthropogenic activities and industrial productions, we attempted to measure the sediment mercury concentration in the Pearl River estuary. In this work, samples of a creek sediment within this region were collected and mercury concentrations were quantified. Total mercury, simultaneously extracted mercury, methylmercury, and bio-accumulated mercury were individually assayed. Results indicated that total mercury concentrations of investigated sites ranged from 1.073 to 4.450 µg/g dry sediment. The mercury in the sediment also transformed into more toxic methylmercury, which then adversely affected benthos biodiversity. Correlation analysis revealed that, mercury was accumulated into benthic microorganisms, mainly through the uptake of methylmercury. High concentrations of acid-volatile sulfide in the sediment indicated the presence of active sulfate-reducing bacteria, which could also catalytically transform inorganic mercury into methylmercury. Correlation analysis further showed that sulfate-reducing bacteria activity accounted for methylmercury formation.


Sign in / Sign up

Export Citation Format

Share Document