scholarly journals Use of Bacillus thuringiensis Toxins for Control of the Cotton Pest Earias insulana (Boisd.) (Lepidoptera: Noctuidae)

2006 ◽  
Vol 72 (1) ◽  
pp. 437-442 ◽  
Author(s):  
María A. Ibargutxi ◽  
Anna Estela ◽  
Juan Ferré ◽  
Primitivo Caballero

ABSTRACT Thirteen of the most common lepidopteran-specific Cry proteins of Bacillus thuringiensis have been tested for their efficacy against newly hatched larvae of two populations of the spiny bollworm, Earias insulana. At a concentration of 100 μg of toxin per milliliter of artificial diet, six Cry toxins (Cry1Ca, Cry1Ea, Cry1Fa, Cry1Ja, Cry2Aa, and Cry2Ab) were not toxic at all. Cry1Aa, Cry1Ja, and Cry2Aa did not cause mortality but caused significant inhibition of growth. The other Cry toxins (Cry1Ab, Cry1Ac, Cry1Ba, Cry1Da, Cry1Ia, and Cry9Ca) were toxic to E. insulana larvae. The 50% lethal concentration values of these toxins ranged from 0.39 to 21.13 μg/ml (for Cry9Ca and Cry1Ia, respectively) for an E. insulana laboratory colony originating from Egypt and from 0.20 to 4.25 μg/ml (for Cry9Ca and Cry1Da, respectively) for a laboratory colony originating from Spain. The relative potencies of the toxins in the population from Egypt were highest for Cry9Ca and Cry1Ab, and they were both significantly more toxic than Cry1Ac and Cry1Ba, followed by Cry1Da and finally Cry1Ia. In the population from Spain, Cry9Ca was the most toxic, followed in decreasing order by Cry1Ac and Cry1Ba, and the least toxic was Cry1Da. Binding experiments were performed to test whether the toxic Cry proteins shared binding sites in this insect. 125I-labeled Cry1Ac and Cry1Ab and biotinylated Cry1Ba, Cry1Ia, and Cry9Ca showed specific binding to the brush border membrane vesicles from E. insulana. Competition binding experiments among these toxins showed that only Cry1Ab and Cry1Ac competed for the same binding sites, indicating a high possibility that this insect may develop cross-resistance to Cry1Ab upon exposure to Cry1Ac transgenic cotton but not to the other toxins tested.

2017 ◽  
Vol 83 (11) ◽  
Author(s):  
Yolanda Bel ◽  
Joel J. Sheets ◽  
Sek Yee Tan ◽  
Kenneth E. Narva ◽  
Baltasar Escriche

ABSTRACT Anticarsia gemmatalis (velvetbean caterpillar) and Chrysodeixis includens (soybean looper, formerly named Pseudoplusia includens) are two important defoliating insects of soybeans. Both lepidopteran pests are controlled mainly with synthetic insecticides. Alternative control strategies, such as biopesticides based on the Bacillus thuringiensis (Bt) toxins or transgenic plants expressing Bt toxins, can be used and are increasingly being adopted. Studies on the insect susceptibilities and modes of action of the different Bt toxins are crucial to determine management strategies to control the pests and to delay outbreaks of insect resistance. In the present study, the susceptibilities of both soybean pests to the Bt toxins Cry1Ac, Cry1Fa, Cry1Ca, and Cry2Aa have been investigated. Bioassays performed in first-instar larvae showed that both insects are susceptible to all these toxins. Competition-binding studies carried out with Cry1Ac and Cry1Fa 125-iodine labeled proteins demonstrated the presence of specific binding sites for both of them on the midgut brush border membrane vesicles (BBMVs) of both A. gemmatalis and C. includens. Competition-binding experiments and specific-binding inhibition studies performed with selected sugars and lectins indicated that Cry1Ac and Cry1Fa share some, but not all, binding sites in the midguts of both insects. Also, the Cry1Ac- or Cry1Fa-binding sites were not shared with Cry1Ca or Cry2Aa in either soybean pest. This study contributes to the knowledge of Bt toxicity and midgut toxin binding sites in A. gemmatalis and C. includens and sheds light on the cross-resistance potential of Cry1Ac, Cry1Fa, Cry1Ca, and Cry2Aa Bt proteins as candidate proteins for Bt-pyramided crops. IMPORTANCE In the present study, the toxicity and the mode of action of the Bacillus thuringiensis (Bt) toxins Cry1Ac, Cry1Fa, Cry1Ca, and Cry2Aa in Anticarsia gemmatalis and Chrysodeixis includens (important defoliating pests of soybeans) have been investigated. These studies are crucial for determining management strategies for pest control. Bioassays showed that both insects were susceptible to the toxins. Competition-binding studies demonstrated the presence of Cry1Fa- and Cry1Ac-specific binding sites in the midguts of both pests. These results, together with the results from binding inhibition studies performed with sugars and lectins, indicated that Cry1Ac and Cry1Fa share some, but not all, binding sites, and that they were not shared with Cry1Ca or Cry2Aa in either soybean pest. This study contributes to the knowledge of Bt toxicity in A. gemmatalis and C. includens and sheds light on the cross-resistance potential of Cry1Ac, Cry1Fa, Cry1Ca, and Cry2Aa Bt proteins as candidate proteins for Bt-pyramided crops.


2006 ◽  
Vol 72 (2) ◽  
pp. 1595-1603 ◽  
Author(s):  
Ana Rodrigo-Simón ◽  
Ruud A. de Maagd ◽  
Carlos Avilla ◽  
Petra L. Bakker ◽  
Jos Molthoff ◽  
...  

ABSTRACT The effect of Cry proteins of Bacillus thuringiensis on the green lacewing (Chrysoperla carnea) was studied by using a holistic approach which consisted of independent, complementary experimental strategies. Tritrophic experiments were performed, in which lacewing larvae were fed Helicoverpa armigera larvae reared on Cry1Ac, Cry1Ab, or Cry2Ab toxins. In complementary experiments, a predetermined amount of purified Cry1Ac was directly fed to lacewing larvae. In both experiments no effects on prey utilization or fitness parameters were found. Since binding to the midgut is an indispensable step for toxicity of Cry proteins to known target insects, we hypothesized that specific binding of the Cry1A proteins should be found if the proteins were toxic to the green lacewing. In control experiments, Cry1Ac was detected bound to the midgut epithelium of intoxicated H. armigera larvae, and cell damage was observed. However, no binding or histopathological effects of the toxin were found in tissue sections of lacewing larvae. Similarly, Cry1Ab or Cry1Ac bound in a specific manner to brush border membrane vesicles from Spodoptera exigua but not to similar fractions from green lacewing larvae. The in vivo and in vitro binding results strongly suggest that the lacewing larval midgut lacks specific receptors for Cry1Ab or Cry1Ac. These results agree with those obtained in bioassays, and we concluded that the Cry toxins tested, even at concentrations higher than those expected in real-life situations, do not have a detrimental effect on the green lacewing when they are ingested either directly or through the prey.


2019 ◽  
Vol 113 (2) ◽  
pp. 553-561 ◽  
Author(s):  
Bruce E Tabashnik ◽  
Yves Carrière

Abstract Crops genetically engineered to produce insecticidal proteins from the bacterium Bacillus thuringiensis (Bt) have revolutionized control of some major pests. Some recently introduced Bt crops make Vip3Aa, a vegetative insecticidal protein (Vip), which reportedly does not share binding sites or structural homology with the crystalline (Cry) proteins of Bt used widely in transgenic crops for more than two decades. Field-evolved resistance to Bt crops with practical consequences for pest control includes 21 cases that collectively reduce the efficacy of nine Cry proteins, but such practical resistance has not been reported yet for any Vip. Here, we review previously published data to evaluate cross-resistance between Vip and Cry toxins. We analyzed 31 cases based on 48 observations, with each case based on one to five observations assessing cross-resistance from pairwise comparisons between 21 resistant strains and 13 related susceptible strains of eight species of lepidopteran pests. Confirming results from previous analyses of smaller data sets, we found weak, statistically significant cross-resistance between Vip3 and Cry1 toxins, with a mean of 1.5-fold cross-resistance in 21 cases (range: 0.30–4.6-fold). Conversely, we did not detect significant positive cross-resistance between Vip3 toxins and Cry2Ab. Distinguishing between weak, significant cross-resistance, and no cross-resistance may be useful for better understanding mechanisms of resistance and effectively managing pest resistance to Bt crops.


2009 ◽  
Vol 75 (7) ◽  
pp. 2236-2237 ◽  
Author(s):  
Janete A. D. Sena ◽  
Carmen Sara Hernández-Rodríguez ◽  
Juan Ferré

ABSTRACT Vip3Aa, Vip3Af, Cry1Ab, and Cry1Fa were tested for their toxicities and binding interactions. Vip3A proteins were more toxic than Cry1 proteins. Binding assays showed independent specific binding sites for Cry1 and Vip3A proteins. Cry1Ab and Cry1Fa competed for the same binding sites, whereas Vip3Aa competed for those of Vip3Af.


2002 ◽  
Vol 68 (8) ◽  
pp. 4090-4094 ◽  
Author(s):  
Salvador Herrero ◽  
Marisé Borja ◽  
Juan Ferré

ABSTRACT Despite the fact that around 200 cry genes from Bacillus thuringiensis have already been cloned, only a few Cry proteins are toxic towards a given pest. A crucial step in the mode of action of Cry proteins is binding to specific sites in the midgut of susceptible insects. Binding studies in insects that have developed cross-resistance discourage the combined use of Cry proteins sharing the same binding site. If resistance management strategies are to be implemented, the arsenal of Cry proteins suitable to control a given pest may be not so vast as it might seem at first. The present study evaluates the potential of B. thuringiensis for the control of a new pest, the geranium bronze (Cacyreus marshalli Butler), a butterfly that is threatening the popularity of geraniums in Spain. Eleven of the most common Cry proteins from the three lepidopteran-active Cry families (Cry1, Cry2, and Cry9) were tested against the geranium bronze for their toxicity and binding site relationships. Using 125I-labeled Cry1A proteins we found that, of the seven most active Cry proteins, six competed for binding to the same site. For the long-term control of the geranium bronze with B. thuringiensis-based insecticides it would be advisable to combine any of the Cry proteins sharing the binding site (preferably Cry1Ab, since it is the most toxic) with those not competing for the same site. Cry1Ba would be the best choice of these proteins, since it is significantly more toxic than the others not binding to the common site.


2005 ◽  
Vol 71 (11) ◽  
pp. 6863-6869 ◽  
Author(s):  
Ali H. Sayyed ◽  
Roxani Gatsi ◽  
M. Sales Ibiza-Palacios ◽  
Baltasar Escriche ◽  
Denis J. Wright ◽  
...  

ABSTRACT A field collected population of Plutella xylostella (SERD4) was selected in the laboratory with Bacillus thuringiensis endotoxins Cry1Ac (Cry1Ac-SEL) and Cry1Ab (Cry1Ab-SEL). Both subpopulations showed similar phenotypes: high resistance to the Cry1A toxins and little cross-resistance to Cry1Ca or Cry1D. A previous analysis of the Cry1Ac-SEL showed incompletely dominant resistance to Cry1Ac with more than one factor, at least one of which was sex influenced. In the present study reciprocal mass crosses between Cry1Ab-SEL and a laboratory susceptible population (ROTH) provided evidence that Cry1Ab resistance was also inherited as incompletely dominant trait with more than one factor, and at least one of the factors was sex influenced. Analysis of single pair mating indicated that Cry1Ab-SEL was still heterogeneous for Cry1Ab resistance genes, showing genes with different degrees of dominance. Binding studies showed a large reduction of specific binding of Cry1Ab and Cry1Ac to midgut membrane vesicles of the Cry1Ab-SEL subpopulation. Cry1Ab-SEL was found to be more susceptible to trypsin-activated Cry1Ab toxin than protoxin, although no defect in toxin activation was found. Present and previous results indicate a common basis of resistance to both Cry1Ab and Cry1Ac in selected subpopulations and suggest that a similar set of resistance genes are responsible for resistance to Cry1Ab and Cry1Ac and are selected whichever toxin was used. The possibility of an incompletely dominant trait of resistant to these toxins should be taken into account when considering refuge resistance management strategies.


2008 ◽  
Vol 74 (24) ◽  
pp. 7654-7659 ◽  
Author(s):  
Carmen Sara Hernández-Rodríguez ◽  
Adri Van Vliet ◽  
Nadine Bautsoens ◽  
Jeroen Van Rie ◽  
Juan Ferré

ABSTRACT For a long time, it has been assumed that the mode of action of Cry2A toxins was unique and different from that of other three-domain Cry toxins due to their apparent nonspecific and unsaturable binding to an unlimited number of receptors. However, based on the homology of the tertiary structure among three-domain Cry toxins, similar modes of action for all of them are expected. To confirm this hypothesis, binding assays were carried out with 125I-labeled Cry2Ab. Saturation assays showed that Cry2Ab binds in a specific and saturable manner to brush border membrane vesicles (BBMVs) of Helicoverpa armigera. Homologous-competition assays with 125I-Cry2Ab demonstrated that this toxin binds with high affinity to binding sites in H. armigera and Helicoverpa zea midgut. Heterologous-competition assays showed a common binding site for three toxins belonging to the Cry2A family (Cry2Aa, Cry2Ab, and Cry2Ae), which is not shared by Cry1Ac. Estimation of K d (dissociation constant) values revealed that Cry2Ab had around 35-fold less affinity than Cry1Ac for BBMV binding sites in both insect species. Only minor differences were found regarding R t (concentration of binding sites) values. This study questions previous interpretations from other authors performing binding assays with Cry2A toxins and establishes the basis for the mode of action of Cry2A toxins.


2000 ◽  
Vol 66 (4) ◽  
pp. 1553-1558 ◽  
Author(s):  
Carolina Rausell ◽  
Amparo Consuelo Martínez-Ramírez ◽  
Inmaculada García-Robles ◽  
María Dolores Real

ABSTRACT The insecticidal activity and receptor binding properties ofBacillus thuringiensis Cry1A toxins towards the forest pests Thaumetopoea pityocampa (processionary moth) andLymantria monacha (nun moth) were investigated. Cry1Aa, Cry1Ab, and Cry1Ac were highly toxic (corresponding 50% lethal concentration values: 956, 895, and 379 pg/μl, respectively) to first-instar T. pityocampa larvae. During larval development, Cry1Ab and Cry1Ac toxicity decreased with increasing age, although the loss of activity was more pronounced for Cry1Ab. Binding assays with 125I-labelled Cry1Ab and brush border membrane vesicles from T. pityocampa first- and last-instar larvae detected a remarkable decrease in the overall Cry1Ab binding affinity in last-instar larvae, although saturable Cry1Ab binding to both instars was observed. Homologous competition experiments demonstrated the loss of one of the two Cry1Ab high-affinity binding sites detected in first-instar larvae. Growth inhibition assays with sublethal doses of Cry1Aa, Cry1Ab, and Cry1Ac in L. monacha showed that all three toxins were able to delay molting from second instar to third instar. Specific saturable binding of Cry1Ab was detected only in first- and second-instar larvae. Cry1Ab binding was not detected in last-instar larvae, although specific binding of Cry1Aa and Cry1Ac was observed. These results demonstrate a loss of Cry1Ab binding sites during development on the midgut epithelium of T. pityocampa and L. monacha, correlating in T. pityocampa with a decrease in Cry1Ab toxicity with increasing age.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Yolanda Bel ◽  
Marc Zack ◽  
Ken Narva ◽  
Baltasar Escriche

AbstractAnticarsia gemmatalis (velvetbean caterpillar) and Chrysodeixis includens (soybean looper) are two important defoliation pests of soybeans. In the present study, we have investigated the susceptibility and brush border membrane-binding properties of both species to Bacillus thuringiensis Cry1Ea toxin. Bioassays performed in first-instar larvae demonstrated potent activity against both soybean pests in terms of mortality or practical mortality. Competition-binding studies carried out with 125Iodine-labelled Cry1Ea, demonstrated the presence of specific binding sites on the midgut brush border membrane vesicles (BBMV) of both insect species. Heterologous competition-binding experiments indicated that Cry1Ea does not share binding sites with Cry1Ac or Cry1Fa in either soybean pest. This study contributes to the knowledge of Cry1Ea toxicity and midgut binding sites in A. gemmatalis and C. includens and sheds light on the cross-resistance potential of Cry1Ea with other Bt proteins aimed at controlling lepidopteran pests in soybeans.


Author(s):  
C. J. Foley ◽  
L. E. Maelia ◽  
J. F. Hainfeld ◽  
J. S. Wall

The Brookhaven STEM is capable of visualizing single heavy atoms at a beam dose of >103 el/Å2. Heteropolytungstate clusters, including W12PO403, have been found to incorporate several desirable properties as labels for biological specimens. They may be resolved at much lower beam doses due to their high concentrations of multiple heavy atoms and are directly visible labels. A lower beam dose also helps to preserve the biological structure of the specimens. Furthermore, they are extremely stable in the electron beam. Lastly, they are capable of being derivatized as chemoselective reagents for specific binding sites on biomolecules, as in the previously reported undecagold compound.Two new classes of heavy atom labels, one specific for sulfhydryl and the other specific for both amino and sulfhydryl binding sites on proteins, have been synthesized by reactions analogous to those illustrated in Scheme 1.


Sign in / Sign up

Export Citation Format

Share Document