scholarly journals RNA-Based Stable Isotope Probing and Isolation of Anaerobic Benzene-Degrading Bacteria from Gasoline-Contaminated Groundwater

2006 ◽  
Vol 72 (5) ◽  
pp. 3586-3592 ◽  
Author(s):  
Yuki Kasai ◽  
Yoh Takahata ◽  
Mike Manefield ◽  
Kazuya Watanabe

ABSTRACT Stable isotope probing (SIP) of benzene-degrading bacteria in gasoline-contaminated groundwater was coupled to denaturing gradient gel electrophoresis (DGGE) of DNA fragments amplified by reverse transcription-PCR from community 16S rRNA molecules. Supplementation of the groundwater with [13C6]benzene together with an electron acceptor (nitrate, sulfate, or oxygen) showed that a phylotype affiliated with the genus Azoarcus specifically appeared in the 13C-RNA fraction only when nitrate was supplemented. This phylotype was also observed as the major band in DGGE analysis of bacterial 16S rRNA gene fragments amplified by PCR from the gasoline-contaminated groundwater. In order to isolate the Azoarcus strains, the groundwater sample was streaked on agar plates containing nonselective diluted CGY medium, and the DGGE analysis was used to screen colonies formed on the plates. This procedure identified five bacterial isolates (from 60 colonies) that corresponded to the SIP-identified Azoarcus phylotype, among which two strains (designated DN11 and AN9) degraded benzene under denitrifying conditions. Incubation of these strains with [14C]benzene showed that the labeled carbon was mostly incorporated into 14CO2 within 14 days. These results indicate that the Azoarcus population was involved in benzene degradation in the gasoline-contaminated groundwater under denitrifying conditions. We suggest that RNA-based SIP identification coupled to phylogenetic screening of nonselective isolates facilitates the isolation of enrichment/isolation-resistant microorganisms with a specific function.

2015 ◽  
Vol 81 (14) ◽  
pp. 4607-4615 ◽  
Author(s):  
Xiaoqing Wang ◽  
Christine E. Sharp ◽  
Gareth M. Jones ◽  
Stephen E. Grasby ◽  
Allyson L. Brady ◽  
...  

ABSTRACTThe exopolysaccharides (EPSs) produced by some bacteria are potential growth substrates for other bacteria in soil. We used stable-isotope probing (SIP) to identify aerobic soil bacteria that assimilated the cellulose produced byGluconacetobacter xylinusor the EPS produced byBeijerinckia indica. The latter is a heteropolysaccharide comprised primarily ofl-guluronic acid,d-glucose, andd-glycero-d-mannoheptose.13C-labeled EPS and13C-labeled cellulose were purified from bacterial cultures grown on [13C]glucose. Two soils were incubated with these substrates, and bacteria actively assimilating them were identified via pyrosequencing of 16S rRNA genes recovered from13C-labeled DNA. Cellulose C was assimilated primarily by soil bacteria closely related (93 to 100% 16S rRNA gene sequence identities) to known cellulose-degrading bacteria. However,B. indicaEPS was assimilated primarily by bacteria with low identities (80 to 95%) to known species, particularly by different members of the phylumPlanctomycetes. In one incubation, members of thePlanctomycetesmade up >60% of all reads in the labeled DNA and were only distantly related (<85% identity) to any described species. Although it is impossible with SIP to completely distinguish primary polysaccharide hydrolyzers from bacteria growing on produced oligo- or monosaccharides, the predominance ofPlanctomycetessuggested that they were primary degraders of EPS. Other bacteria assimilatingB. indicaEPS included members of theVerrucomicrobia, candidate division OD1, and theArmatimonadetes. The results indicate that some uncultured bacteria in soils may be adapted to using complex heteropolysaccharides for growth and suggest that the use of these substrates may provide a means for culturing new species.


2010 ◽  
Vol 76 (8) ◽  
pp. 2468-2477 ◽  
Author(s):  
Maria Tourna ◽  
Thomas E. Freitag ◽  
James I. Prosser

ABSTRACT The response of natural microbial communities to environmental change can be assessed by determining DNA- or RNA-targeted changes in relative abundance of 16S rRNA gene sequences by using fingerprinting techniques such as denaturing gradient gel electrophoresis (DNA-DGGE and RNA-DGGE, respectively) or by stable isotope probing (SIP) of 16S rRNA genes following incubation with a 13C-labeled substrate (DNA-SIP-DGGE). The sensitivities of these three approaches were compared during batch growth of communities containing two or three Nitrosospira pure or enriched cultures with different tolerances to a high ammonia concentration. Cultures were supplied with low, intermediate, or high initial ammonia concentrations and with 13C-labeled carbon dioxide. DNA-SIP-DGGE provided the most direct evidence for growth and was the most sensitive, with changes in DGGE profiles evident before changes in DNA- and RNA-DGGE profiles and before detectable increases in nitrite and nitrate production. RNA-DGGE provided intermediate sensitivity. In addition, the three molecular methods were used to follow growth of individual strains within communities. In general, changes in relative activities of individual strains within communities could be predicted from monoculture growth characteristics. Ammonia-tolerant Nitrosospira cluster 3b strains dominated mixed communities at all ammonia concentrations, and ammonia-sensitive strains were outcompeted at an intermediate ammonia concentration. However, coexistence of ammonia-tolerant and ammonia-sensitive strains occurred at the lowest ammonia concentration, and, under some conditions, strains inhibited at high ammonia in monoculture were active at high ammonia in mixed cultures, where they coexisted with ammonia-tolerant strains. The results therefore demonstrate the sensitivity of SIP for detection of activity of organisms with relatively low yield and low activity and its ability to follow changes in the structure of interacting microbial communities.


2016 ◽  
Vol 83 (4) ◽  
Author(s):  
Kevin M. Posman ◽  
Christopher M. DeRito ◽  
Eugene L. Madsen

ABSTRACT Investigations of environmental microbial communities are crucial for the discovery of populations capable of degrading hazardous compounds and may lead to improved bioremediation strategies. The goal of this study was to identify microorganisms responsible for aerobic benzene degradation in coal tar-contaminated groundwater. Benzene degradation was monitored in laboratory incubations of well waters using gas chromatography mass spectrometry (GC-MS). Stable isotope probing (SIP) experiments using [13C]benzene enabled us to obtain 13C-labled community DNA. From this, 16S rRNA clone libraries identified Gammaproteobacteria and Betaproteobacteria as the active benzene-metabolizing microbial populations. Subsequent cultivation experiments yielded nine bacterial isolates that grew in the presence of benzene; five were confirmed in laboratory cultures to grow on benzene. The isolated benzene-degrading organisms were genotypically similar (>97% 16S rRNA gene nucleotide identities) to the organisms identified in SIP experiments. One isolate, Variovorax MAK3, was further investigated for the expression of a putative aromatic ring-hydroxylating dioxygenase (RHD) hypothesized to be involved in benzene degradation. Microcosm experiments using Variovorax MAK3 revealed a 10-fold increase in RHD (Vapar_5383) expression, establishing a link between this gene and benzene degradation. Furthermore, the addition of Variovorax MAK3 to microcosms prepared from site waters accelerated community benzene degradation and correspondingly increased RHD gene expression. In microcosms using uninoculated groundwater, quantitative (q)PCR assays (with 16S rRNA and RDH genes) showed that Variovorax was present and responsive to added benzene. These data demonstrate how the convergence of cultivation-dependent and -independent techniques can boost understandings of active populations and functional genes in complex benzene-degrading microbial communities. IMPORTANCE Benzene is a human carcinogen whose presence in contaminated groundwater drives environmental cleanup efforts. Although the aerobic biodegradation of benzene has long been established, knowledge of the identity of the microorganisms in complex naturally occurring microbial communities responsible for benzene biodegradation has evaded scientific inquiry for many decades. Here, we applied a molecular biology technique known as stable isotope probing (SIP) to the microbial communities residing in contaminated groundwater samples to identify the community members active in benzene biodegradation. We complemented this approach by isolating and growing in the laboratory a bacterium representative of the bacteria found using SIP. Further characterization of the isolated bacterium enabled us to track the expression of a key gene that attacks benzene both in pure cultures of the bacterium and in the naturally occurring groundwater microbial community. This work advances information regarding the documentation of microbial processes, especially the populations and genes that contribute to bioremediation.


2005 ◽  
Vol 71 (2) ◽  
pp. 904-911 ◽  
Author(s):  
Hiroyuki Futamata ◽  
Yayoi Nagano ◽  
Kazuya Watanabe ◽  
Akira Hiraishi

ABSTRACT A chemostat enrichment of soil bacteria growing on phenol as the sole carbon source has been shown to exhibit quite high trichloroethylene (TCE)-degrading activities (H. Futamata, S. Harayama, and K. Watanabe, Appl. Environ. Microbiol. 67:4671-4677, 2001). To identify the bacterial populations responsible for the high TCE-degrading activity, a multidisciplinary survey of the chemostat enrichment was conducted by employing molecular-ecological and culture-dependent approaches. Three chemostat enrichment cultures were newly developed under different phenol-loading conditions (0.25, 0.75, and 1.25 g liter−1 day−1) in this study, and the TCE-degrading activities of the enrichments were measured. Among them, the enrichment at 0.75 g liter−1 day−1 (enrichment 0.75) expressed the highest activity. Denaturing gradient gel electrophoresis of PCR-amplified 16S rRNA gene fragments detected a Variovorax ribotype as the strongest band in enrichment 0.75; however, it was not a major ribotype in the other samples. Bacteria were isolated from enrichment 0.75 by direct plating, and their 16S rRNA genes and genes encoding the largest subunit of phenol hydroxylase (LmPHs) were analyzed. Among the bacteria isolated, several strains were affiliated with the genus Variovorax and were shown to have high-affinity-type LmPHs. The LmPH of the Variovorax strains was also detected as the major genotype in enrichment 0.75. Kinetic analyses of phenol and TCE degradation revealed, however, that these strains exhibited quite low affinity for phenol compared to other phenol-degrading bacteria, while they showed quite high specific TCE-degrading activities and relatively high affinity for TCE. Owing to these unique kinetic traits, the Variovorax strains can obviate competitive inhibition of TCE degradation by the primary substrate of the catabolic enzyme (i.e., phenol), contributing to the high TCE-degrading activity of the chemostat enrichments. On the basis of physiological information, mechanisms accounting for the way the Variovorax population overgrew the chemostat enrichment are discussed.


2002 ◽  
Vol 68 (7) ◽  
pp. 3401-3407 ◽  
Author(s):  
Erwin G. Zoetendal ◽  
Atte von Wright ◽  
Terttu Vilpponen-Salmela ◽  
Kaouther Ben-Amor ◽  
Antoon D. L. Akkermans ◽  
...  

ABSTRACT The human gastrointestinal (GI) tract harbors a complex community of bacterial cells in the mucosa, lumen, and feces. Since most attention has been focused on bacteria present in feces, knowledge about the mucosa-associated bacterial communities in different parts of the colon is limited. In this study, the bacterial communities in feces and biopsy samples from the ascending, transverse, and descending colons of 10 individuals were analyzed by using a 16S rRNA approach. Flow cytometric analysis indicated that 105 to 106 bacteria were present in the biopsy samples. To visualize the diversity of the predominant and the Lactobacillus group community, denaturing gradient gel electrophoresis (DGGE) analysis of 16S rRNA gene amplicons was performed. DGGE analysis and similarity index comparisons demonstrated that the predominant mucosa-associated bacterial community was host specific and uniformly distributed along the colon but significantly different from the fecal community (P < 0.01). The Lactobacillus group-specific profiles were less complex than the profiles reflecting the predominant community. For 6 of the 10 individuals the community of Lactobacillus-like bacteria in the biopsy samples was similar to that in the feces. Amplicons having 99% sequence similarity to the 16S ribosomal DNA of Lactobacillus gasseri were detected in the biopsy samples of nine individuals. No significant differences were observed between healthy and diseased individuals. The observed host-specific DGGE profiles of the mucosa-associated bacterial community in the colon support the hypothesis that host-related factors are involved in the determination of the GI tract microbial community.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Hui-Zhong Wang ◽  
Xiao-Meng Lv ◽  
Yue Yi ◽  
Dan Zheng ◽  
Min Gou ◽  
...  

AbstractPropionate is one of the most important intermediates of anaerobic fermentation. Its oxidation performed by syntrophic propionate-oxidizing bacteria coupled with hydrogenotrophic methanogens is considered to be a rate-limiting step for methane production. However, the current understanding of SPOB is limited due to the difficulty of pure culture isolation. In the present study, two anaerobic chemostats fed with propionate as the sole carbon source were operated at different dilution rates (0.05 d−1 and 0.15 d−1). The propionate- and acetate-oxidizing bacteria in the two methanogenic chemostats were investigated combining DNA-stable isotope probing (DNA-SIP) and 16S rRNA gene high-throughput sequencing. The results of DNA-SIP with 13C-propionate/acetate suggested that, Smithella, Syntrophobacter, Cryptanaerobacter, and unclassified Rhodospirillaceae may be putative propionate-oxidizing bacteria; unclassified Spirochaetaceae, unclassified Synergistaceae, unclassified Elusimicrobia, Mesotoga, and Gracilibacter may contribute to acetate oxidation; unclassified Syntrophaceae and Syntrophomonas may be butyrate oxidizers. By DNA-SIP, unclassified OTUs with 16S rRNA gene abundance higher than 62% of total Bacteria in the PL chemostat and 38% in the PH chemostat were revealed to be related to the degradation of propionate. These results suggest that a variety of uncultured bacteria contribute to propionate degradation during anaerobic digestion. The functions and metabolic characteristics of these bacteria require further investigation.


2011 ◽  
Vol 77 (21) ◽  
pp. 7856-7860 ◽  
Author(s):  
Tony Gutierrez ◽  
David R. Singleton ◽  
Michael D. Aitken ◽  
Kirk T. Semple

ABSTRACTPolycyclic aromatic hydrocarbon (PAH)-degrading bacteria associated with an algal bloom in Tampa Bay, FL, were investigated by stable isotope probing (SIP) with uniformly labeled [13C]naphthalene. The dominant sequences in clone libraries constructed from13C-enriched bacterial DNA (from naphthalene enrichments) were identified as uncharacterized members of the familyRhodobacteraceae. Quantitative PCR primers targeting the 16S rRNA gene of these uncultivated organisms were used to determine their abundance in incubations amended with unlabeled naphthalene and phenanthrene, both of which showed substantial increases in gene copy numbers during the experiments. As demonstrated by this work, the application of uniformly13C-labeled PAHs in SIP experiments can successfully be used to identify novel PAH-degrading bacteria in marine waters.


2011 ◽  
Vol 77 (17) ◽  
pp. 5995-5999 ◽  
Author(s):  
Angela Woods ◽  
Maribeth Watwood ◽  
Egbert Schwartz

ABSTRACTDNA stable isotope probing (DNA-SIP) with H218O was used to identify a toluene-degrading bacterium in soil amended with 48 ppm toluene. After quantification of toluene degradation rates in soil, DNA was extracted from soil incubated with H218O, H216O, H216O and 48 ppm toluene, or H218O and 48 ppm toluene. A single DNA band formed along a cesium chloride gradient after isopycnic centrifugation of extracts from soils incubated with H216O. With extracts from soils to which only H218O was added, two distinct DNA bands formed, while three bands formed when DNA extracted from soil incubated with both H218O and toluene was analyzed. We suggest that this third band formed because toluene does not contain any oxygen atoms and toluene-degrading organisms had to transfer oxygen atoms from H218O into metabolic intermediates to form nucleic acidsde novo. We extracted the third DNA band and amplified a large fraction of the bacterial 16S rRNA gene. Direct sequencing of the PCR product obtained from the labeled DNA, as well as cloned 16S rRNA amplicons, identified a known toluene degrader,Rhodococcus jostiiRHA1. A toluene-degrading bacterial strain was subsequently isolated from soil and shown to beRhodococcus jostiiRHA1. Finally, quantitative real-time PCR analysis showed that the abundance of the 16S rRNA gene ofRhodococcus jostiiRHA1 increased in soil after toluene exposure but not in soils from which toluene was withheld. This study indicates that H218O DNA-SIP can be a useful method for identifying pollutant-degrading bacteria in soil.


2011 ◽  
Vol 77 (9) ◽  
pp. 2984-2991 ◽  
Author(s):  
Maiysha D. Jones ◽  
David R. Singleton ◽  
Wei Sun ◽  
Michael D. Aitken

ABSTRACTIn many of the DNA-based stable-isotope probing (SIP) studies published to date in which soil communities were investigated, a single DNA extraction was performed on the soil sample, usually using a commercial DNA extraction kit, prior to recovering the13C-labeled (heavy) DNA by density-gradient ultracentrifugation. Recent evidence suggests, however, that a single extraction of a soil sample may not lead to representative recovery of DNA from all of the organisms in the sample. To determine whether multiple DNA extractions would affect the DNA yield, the eubacterial 16S rRNA gene copy number, or the identification of anthracene-degrading bacteria, we performed seven successive DNA extractions on the same aliquot of contaminated soil either untreated or enriched with [U-13C]anthracene. Multiple extractions were necessary to maximize the DNA yield and 16S rRNA gene copy number from both untreated and anthracene-enriched soil samples. Sequences within the orderSphingomonadales, but unrelated to any previously described genus, dominated the 16S rRNA gene clone libraries derived from13C-enriched DNA and were designated “anthracene group 1.” Sequences clustering withVariovoraxspp., which were also highly represented, and sequences related to the genusPigmentiphagawere newly associated with anthracene degradation. The bacterial groups collectively identified across all seven extracts were all recovered in the first extract, although quantitative PCR analysis of SIP-identified groups revealed quantitative differences in extraction patterns. These results suggest that performing multiple DNA extractions on soil samples improves the extractable DNA yield and the number of quantifiable eubacterial 16S rRNA gene copies but have little qualitative effect on the identification of the bacterial groups associated with the degradation of a given carbon source by SIP.


2006 ◽  
Vol 72 (10) ◽  
pp. 6837-6840 ◽  
Author(s):  
Ashvini Chauhan ◽  
Andrew Ogram

ABSTRACT The consumption of acetate in soils taken from a nutrient gradient in the northern Florida Everglades was studied by stable isotope probing. Bacterial and archaeal 16S rRNA gene clone libraries from eutrophic and oligotrophic soil microcosms strongly suggest that a significant amount of acetate is consumed by syntrophic acetate oxidation in nutrient-enriched soil.


Sign in / Sign up

Export Citation Format

Share Document