florida everglades
Recently Published Documents


TOTAL DOCUMENTS

442
(FIVE YEARS 47)

H-INDEX

48
(FIVE YEARS 4)

Author(s):  
John Anderson ◽  
Durland Fish ◽  
Philip Armstrong ◽  
Michael Misencik ◽  
Angela Bransfield ◽  
...  

Mosquitoes were collected for 12 consecutive months beginning June 2016, from 11 locations in the Florida Everglades, Collier County, and tested for viruses by isolation in Vero cells and subsequent identification. One species complex and 31 species of mosquitoes were identified from 668,809 specimens. Ochlerotatus taeniorhynchus comprised 72.2% of the collection. Other notable species were Anopheles crucians complex, Culex nigripalpus, Cx. erraticus, and Cx. cedecei. Seven species of virus were identified from 110 isolations: Everglades, Gumbo Limbo, Mahogany Hammock, Pahayokee, Shark River, Tensaw, and West Nile viruses. Everglades, West Nile, Tensaw, and Mahogany Hammock viruses were most frequently isolated. Largest numbers of viruses were identified from Cx. cedecei, Cx. nigripalpus, and An. crucians complex. Five species of virus were isolated from Cx. cedecei. Viruses were isolated from mangrove, cypress swamp, hardwood hammock, and sawgrass habitats. West Nile virus was isolated August through October when Cx. nigripalpus was most abundant. Everglades virus was the most frequently isolated virus from nine species of mosquitoes collected from June through August. Tensaw virus was isolated primarily from Anopheles species. Isolations were made in July, August, January, February, and April, suggesting that this virus may be present in host-seeking mosquitoes throughout the year. Mahogany Hammock, Shark River, Gumbo Limbo, and Pahayokee viruses were isolated primarily from Cx. cedecei from June through December. Shotgun metagenomic sequencing was used to document that seven pools of Cx. cedecei were infected with two arboviruses. As communities expand into the Everglades, more humans will become exposed to arboviruses.


2022 ◽  
Vol 8 ◽  
Author(s):  
Kelly A. Sloan ◽  
David S. Addison ◽  
Andrew T. Glinsky ◽  
Allison M. Benscoter ◽  
Kristen M. Hart

Globally, sea turtle research and conservation efforts are underway to identify important high-use areas where these imperiled individuals may be resident for weeks to months to years. In the southeastern Gulf of Mexico, recent telemetry studies highlighted post-nesting foraging sites for federally endangered green turtles (Chelonia mydas) around the Florida Keys. In order to delineate additional areas that may serve as inter-nesting, migratory, and foraging hotspots for reproductively active females nesting in peninsular southwest Florida, we satellite-tagged 14 green turtles that nested at two sites along the southeast Gulf of Mexico coastline between 2017 and 2019: Sanibel and Keewaydin Islands. Prior to this study, green turtles nesting in southwest Florida had not previously been tracked and their movements were unknown. We used switching state space modeling to show that an area off Cape Sable (Everglades), Florida Bay, and the Marquesas Keys are important foraging areas that support individuals that nest on southwest Florida mainland beaches. Turtles were tracked for 39–383 days, migrated for a mean of 4 days, and arrived at their respective foraging grounds in the months of July through September. Turtles remained resident in their respective foraging sites until tags failed, typically after several months, where they established mean home ranges (50% kernel density estimate) of 296 km2. Centroid locations for turtles at common foraging sites were 1.2–36.5 km apart. The area off southwest Florida Everglades appears to be a hotspot for these turtles during both inter-nesting and foraging; this location was also used by turtles that were previously satellite tagged in the Dry Tortugas after nesting. Further evaluation of this important habitat is warranted. Understanding where and when imperiled yet recovering green turtles forage and remain resident is key information for designing surveys of foraging resources and developing additional protection strategies intended to enhance population recovery trajectories.


2021 ◽  
Vol 104 (4) ◽  
Author(s):  
Matthew R. Pintar ◽  
Jeffrey L. Kline ◽  
Joel C. Trexler

PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0259419
Author(s):  
Durland Fish ◽  
Robert B. Tesh ◽  
Hilda Guzman ◽  
Amelia P. A. Travassos da Rosa ◽  
Victoria Balta ◽  
...  

The Greater Everglades Region of South Florida is one of the largest natural wetlands and the only subtropical ecosystem found in the continental United States. Mosquitoes are seasonally abundant in the Everglades where several potentially pathogenic mosquito-borne arboviruses are maintained in natural transmission cycles involving vector-competent mosquitoes and reservoir-competent vertebrate hosts. The fragile nature of this ecosystem is vulnerable to many sources of environmental change, including a wetlands restoration project, climate change, invasive species and residential development. In this study, we obtained baseline data on the distribution and abundance of both mosquitos and arboviruses occurring in the southern Everglades region during the summer months of 2013, when water levels were high, and in 2014, when water levels were low. A total of 367,060 mosquitoes were collected with CO2-baited CDC light traps at 105 collection sites stratified among the major landscape features found in Everglades National Park, Big Cypress National Preserve, Fakahatchee State Park Preserve and Picayune State Forest, an area already undergoing restoration. A total of 2,010 pools of taxonomically identified mosquitoes were cultured for arbovirus isolation and identification. Seven vertebrate arboviruses were isolated: Everglades virus, Tensaw virus, Shark River virus, Gumbo Limbo virus, Mahogany Hammock virus, Keystone virus, and St. Louis encephalitis virus. Except for Tensaw virus, which was absent in 2013, the remaining viruses were found to be most prevalent in hardwood hammocks and in Fakahatchee, less prevalent in mangroves and pinelands, and absent in cypress and sawgrass. In contrast, in the summer of 2014 when water levels were lower, these arboviruses were far less prevalent and only found in hardwood hammocks, but Tensaw virus was present in cypress, sawgrass, pinelands, and a recently burned site. Major environmental changes are anticipated in the Everglades, many of which will result in increased water levels. How these might lead to the emergence of arboviruses potentially pathogenic to both humans and wildlife is discussed.


2021 ◽  
Vol 55 (4) ◽  
Author(s):  
James Skelton ◽  
Ian Bartoszek ◽  
Caitlin E. Beaver ◽  
Kristen M. Hart ◽  
Margaret E. Hunter

2021 ◽  
Vol 51 (3) ◽  
pp. 182-209
Author(s):  
Zoë R. F. Verlaak ◽  
Laurel S. Collins

ABSTRACT This study examined the environmental factors that control the distribution of modern foraminiferal assemblages in the Everglades in order to provide baseline data for a paleoenvironmental study. Total assemblages from the surface 2 cm of 30 sites across the marsh and mangrove environments of southwest Florida were investigated. Eight environmental variables, including average salinity, salinity range, pH, total phosphorus, temperature, and dissolved oxygen, and total organic carbon and total inorganic carbon measured on bulk sediments, as well as the elevation and distance from the coastline were determined for each of the 30 sampling locations. In total, 82 species were identified, the majority of which were calcareous. Diversity decreases, dominance increases, and agglutinated taxa increase from the coastline inland. Rotaliina are equally abundant across the intertidal environment, whereas Miliolina are common near the coast and in lagoons or inland lakes. The most important factor controlling foraminiferal distribution is total organic carbon, followed by total inorganic carbon, distance from coastline, total phosphorus, and salinity. Jadammina macrescens and Miliammina fusca indicate lower salinities (<15 psu). Good indicators for higher salinities are Haplophragmoides wilberti (10–20 psu) and Arenoparrella mexicana (10–20 psu and 28–30 psu). Ammonia spp. prefer salinities >15 psu and Elphidium spp. >20 psu. Ammonia tepida, Helenina anderseni, Trochammina inflata, and A. mexicana prefer organic-rich sediments. Thus, the benthic foraminifera from Everglades sediments are excellent salinity proxies and can be used to determine the history of habitat change in this area as well as to assess past trends in the rate of sea level rise.


EDIS ◽  
2021 ◽  
Vol 2021 (3) ◽  
pp. 3
Author(s):  
Michael T. Olexa ◽  
Tatiana Borisova ◽  
Jana Caracciolo

This handbook is designed to provide a summary of the principal federal and state (Florida) laws that directly or indirectly relate to agriculture. Because these laws are subject to constant revision, portions of the handbook could become outdated at any time. The reader should use it as a means to determine areas in which to seek more information and as a brief directory of agencies that can help answer more specific questions.


PLoS ONE ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. e0250510
Author(s):  
Venetia S. Briggs-Gonzalez ◽  
Mathieu Basille ◽  
Michael S. Cherkiss ◽  
Frank J. Mazzotti

The federally threatened American crocodile (Crocodylus acutus) is a flagship species and ecological indicator of hydrologic restoration in the Florida Everglades. We conducted a long-term capture-recapture study on the South Florida population of American crocodiles from 1978 to 2015 to evaluate the effects of restoration efforts to more historic hydrologic conditions. The study produced 10,040 crocodile capture events of 9,865 individuals and more than 90% of captures were of hatchlings. Body condition and growth rates of crocodiles were highly age-structured with younger crocodiles presenting with the poorest body condition and highest growth rates. Mean crocodile body condition in this study was 2.14±0.35 SD across the South Florida population. Crocodiles exposed to hypersaline conditions (> 40 psu) during the dry season maintained lower body condition scores and reduced growth rate by 13% after one year, by 24% after five years, and by 29% after ten years. Estimated hatchling survival for the South Florida population was 25% increasing with ontogeny and reaching near 90% survival at year six. Hatchling survival was 34% in NE Florida Bay relative to a 69% hatchling survival at Crocodile Lake National Wildlife Refuge and 53% in Flamingo area of Everglades National Park. Hypersaline conditions negatively affected survival, growth and body condition and was most pronounced in NE Florida Bay, where the hydrologic conditions have been most disturbed. The American crocodile, a long-lived animal, with relatively slow growth rate provides an excellent model system to measure the effects of altered hydropatterns in the Everglades landscape. These results illustrate the need for continued long-term monitoring to assess system-wide restoration outcomes and inform resource managers.


Author(s):  
Havalend E. Steinmuller ◽  
Susana L. Stoffella ◽  
Rosario Vidales ◽  
Michael S. Ross ◽  
Sanku Dattamudi ◽  
...  

2021 ◽  
Author(s):  
Sang-Hoon Hong ◽  
Shimon Wdowinski ◽  
Sang-Wan Kim

<p>High spatial resolution maps of relative water level changes in wetlands environment have been successfully generated using spaceborne interferometric synthetic aperture radar (InSAR) techniques. However, the wetland InSAR application has limited hydrological monitoring application, because it estimates water level changes not absolute water levels, which are used by hydrologists. TanDEM-X bistatic observations provide simultaneous phase measurements of water surfaces with a two-satellite constellation without temporal decorrelation. In this study, the TanDEM-X bistatic science phase observations with very large baseline (> 1.3 km) geometric configuration were evaluated to extract absolute water levels of the Everglades wetland in south Florida, U.S.A. Thanks to the large perpendicular baseline, spatial variation of water level surfaces with extremely low slope were estimated. We processed two datasets of TanDEM-X bistatic observations acquired on August 26 and 31, 2015. The perpendicular baselines are 1.43 km and 1.36 km and the ambiguity heights were calculated as 3.61 m and 3.90 m in each interferometric pair. The estimated absolute water level maps with 3.6 m and 7.4 m pixel spacing in range and azimuth directions (multilook factor of 4), respectively, show vast detailed variation of the water surfaces for each acquisition date. Hourly water level measurements obtained by stage stations, which are provided by the Everglades Depth Estimation Network (EDEN), were used for verifying the estimated absolute water levels. Some of stage stations, which are located in low interferometric coherence areas, such as dense vegetated and tree areas, were considered as outliers and were excluded from the comparison. The verification results show very good agreements (code of determination > 0.95) between the TanDEM-X derived absolute water levels and the stage station measurements. The root mean square error (RMSE) between the TanDEM-X results and stage records for the two datasets were 0.77 m and 0.66  m. Although, TanDEM-X bistatic observations have no temporal baseline, there are severe volume decorrelations over various tree types due to the very large perpendicular baseline. The TanDEM-L mission with longer wavelength of radar signal will enable us to generate more coherent interferometric phase observations over wetlands and, consequently, generate improved absolute water level maps.</p>


Sign in / Sign up

Export Citation Format

Share Document