scholarly journals Defining the RNA-Protein Interactions in the Trypanosome Preribosomal Complex

2013 ◽  
Vol 12 (4) ◽  
pp. 559-566 ◽  
Author(s):  
Lei Wang ◽  
Martin Ciganda ◽  
Noreen Williams

ABSTRACT In eukaryotes, 5S rRNA is transcribed in the nucleoplasm and requires the ribosomal protein L5 to deliver it to the nucleolus for ribosomal assembly. The trypanosome-specific proteins P34 and P37 form a novel preribosomal complex with the eukaryotic conserved L5-5S rRNA complex in the nucleoplasm. Previous results suggested that P34 acts together with L5 to bridge the interaction with 5S rRNA and thus to stabilize 5S rRNA, an important role in the early steps of ribosomal biogenesis. Here, we have delineated the domains of the two protein components, L5 and P34, and regions of the RNA partner, 5S rRNA, that are critical for protein-RNA interactions within the complex. We found that the L18 domain of L5 and the N terminus and RNA recognition motif of P34 bind 5S rRNA. We showed that Trypanosoma brucei L5 binds the β arm of 5S rRNA, while P34 binds loop A/stem V of 5S rRNA. We demonstrated that 5S rRNA is able to enhance the association between the protein components of the complex, L5 and P34. Both loop A/stem V and the β arm of 5S rRNA can separately enhance the protein-protein association, but their effects are neither additive nor synergistic. Domains in the two proteins for protein-protein and protein-RNA interactions overlap or are close to each other. This suggests that 5S rRNA binding might cause conformational changes in L5 and P34 and might also bridge the interactions, thus enhancing binding between the protein partners of this novel complex.

eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Kathleen L McCann ◽  
Takamasa Teramoto ◽  
Jun Zhang ◽  
Traci M Tanaka Hall ◽  
Susan J Baserga

ANE syndrome is a ribosomopathy caused by a mutation in an RNA recognition motif of RBM28, a nucleolar protein conserved to yeast (Nop4). While patients with ANE syndrome have fewer mature ribosomes, it is unclear how this mutation disrupts ribosome assembly. Here we use yeast as a model system and show that the mutation confers growth and pre-rRNA processing defects. Recently, we found that Nop4 is a hub protein in the nucleolar large subunit (LSU) processome interactome. Here we demonstrate that the ANE syndrome mutation disrupts Nop4’s hub function by abrogating several of Nop4’s protein-protein interactions. Circular dichroism and NMR demonstrate that the ANE syndrome mutation in RRM3 of human RBM28 disrupts domain folding. We conclude that the ANE syndrome mutation generates defective protein folding which abrogates protein-protein interactions and causes faulty pre-LSU rRNA processing, thus revealing one aspect of the molecular basis of this human disease.


mSphere ◽  
2017 ◽  
Vol 2 (5) ◽  
Author(s):  
Anyango D. Kamina ◽  
Daniel Jaremko ◽  
Linda Christen ◽  
Noreen Williams

ABSTRACT Trypanosoma brucei is the parasitic protozoan that causes African sleeping sickness. Ribosome assembly is essential for the survival of this parasite through the different host environments it encounters during its life cycle. The assembly of the 5S ribonucleoprotein particle (5S RNP) functions as one of the regulatory checkpoints during ribosome biogenesis. We have previously characterized the 5S RNP in T. brucei and showed that trypanosome-specific proteins P34 and P37 are part of this complex. In this study, we characterize for the first time the interactions of the homolog of the assembly factor Rpf2 with members of the 5S RNP in another organism besides fungi. Our studies show that Rpf2 is essential in T. brucei and that it forms unique interactions within the 5S RNP, particularly with P34 and P37. These studies have identified parasite-specific interactions that can potentially function as new therapeutic targets against sleeping sickness. Ribosome biogenesis is a highly complex and conserved cellular process that is responsible for making ribosomes. During this process, there are several assembly steps that function as regulators to ensure proper ribosome formation. One of these steps is the assembly of the 5S ribonucleoprotein particle (5S RNP) in the central protuberance of the 60S ribosomal subunit. In eukaryotes, the 5S RNP is composed of 5S rRNA, ribosomal proteins L5 and L11, and assembly factors Rpf2 and Rrs1. Our laboratory previously showed that in Trypanosoma brucei, the 5S RNP is composed of 5S rRNA, L5, and trypanosome-specific RNA binding proteins P34 and P37. In this study, we characterize an additional component of the 5S RNP, the T. brucei homolog of Rpf2. This is the first study to functionally characterize interactions mediated by Rpf2 in an organism other than fungi. T. brucei Rpf2 (TbRpf2) was identified from tandem affinity purification using extracts prepared from protein A-tobacco etch virus (TEV)-protein C (PTP)-tagged L5, P34, and P37 cell lines, followed by mass spectrometry analysis. We characterized the binding interactions between TbRpf2 and the previously characterized members of the T. brucei 5S RNP. Our studies show that TbRpf2 mediates conserved binding interactions with 5S rRNA and L5 and that TbRpf2 also interacts with trypanosome-specific proteins P34 and P37. We performed RNA interference (RNAi) knockdown of TbRpf2 and showed that this protein is essential for the survival of the parasites and is critical for proper ribosome formation. These studies provide new insights into a critical checkpoint in the ribosome biogenesis pathway in T. brucei. IMPORTANCE Trypanosoma brucei is the parasitic protozoan that causes African sleeping sickness. Ribosome assembly is essential for the survival of this parasite through the different host environments it encounters during its life cycle. The assembly of the 5S ribonucleoprotein particle (5S RNP) functions as one of the regulatory checkpoints during ribosome biogenesis. We have previously characterized the 5S RNP in T. brucei and showed that trypanosome-specific proteins P34 and P37 are part of this complex. In this study, we characterize for the first time the interactions of the homolog of the assembly factor Rpf2 with members of the 5S RNP in another organism besides fungi. Our studies show that Rpf2 is essential in T. brucei and that it forms unique interactions within the 5S RNP, particularly with P34 and P37. These studies have identified parasite-specific interactions that can potentially function as new therapeutic targets against sleeping sickness.


mSphere ◽  
2019 ◽  
Vol 4 (4) ◽  
Author(s):  
Daniel Jaremko ◽  
Martin Ciganda ◽  
Noreen Williams

ABSTRACT Studies in eukaryotic ribosome biogenesis have largely been performed in yeast, where they have described a highly complex process involving numerous protein and RNA components. Due to the complexity and crucial nature of this process, a number of checkpoints are necessary to ensure that only properly assembled ribosomes are released into the cytoplasm. Assembly of the 5S ribonucleoprotein (RNP) complex is one of these checkpoints for late-stage 60S subunit maturation. Studies in Saccharomyces cerevisiae have identified the 5S rRNA and four proteins, L5, L11, Rpf2, and Rrs1, as comprising the ribosome-associated 5S RNP. Work from our laboratory has shown that in the eukaryotic pathogen Trypanosoma brucei, the 5S RNP includes trypanosome-specific proteins P34/P37, as well as homologues of L5, Rpf2, and 5S rRNA. In this study, we examine a homologue of Rrs1 and identify it as an additional member of the T. brucei 5S RNP. Using RNA interference, we show that TbRrs1 is essential for the survival of T. brucei and has an important role in ribosome subunit formation and, together with TbRpf2, plays a role in 25/28S and 5.8S rRNA processing. We further show that TbRrs1 is a member of the T. brucei 5S RNP through the identification of novel direct interactions with P34/P37 and 5S rRNA as well as with TbL5 and TbRpf2. These unique characteristics of TbRrs1 highlight the importance of studying ribosome biogenesis in the context of diverse organisms and identify interactions that could be targeted for future drug development. IMPORTANCE Trypanosoma brucei is a parasite responsible for human and animal African trypanosomiasis. Current treatments for these diseases have numerous problems, and the development of novel chemotherapeutics can be achieved by identifying targets that are parasite specific and part of essential processes. Ribosome biogenesis is the process of generating translation-competent ribosomes and is critical for survival in all organisms. Work from our laboratory has shown that the formation of the 5S RNP, a crucial checkpoint in ribosome biogenesis, requires trypanosome-specific proteins P34/P37 and homologues of Rpf2 and L5 which possess parasite-specific characteristics. In this study, we characterize TbRrs1, an additional member of the T. brucei 5S RNP, and show that it is essential for parasite survival and has unique interactions with P34/P37 and 5S rRNA. This expands our understanding of the 5S RNP in T. brucei and identifies new targets for future drug development.


2003 ◽  
Vol 23 (21) ◽  
pp. 7437-7447 ◽  
Author(s):  
Jun Li ◽  
Ian C. Hawkins ◽  
Christopher D. Harvey ◽  
Jennifer L. Jennings ◽  
Andrew J. Link ◽  
...  

ABSTRACT SRrp86 is a unique member of the SR protein superfamily containing one RNA recognition motif and two serine-arginine (SR)-rich domains separated by an unusual glutamic acid-lysine (EK)-rich region. Previously, we showed that SRrp86 could regulate alternative splicing by both positively and negatively modulating the activity of other SR proteins and that the unique EK domain could inhibit both constitutive and alternative splicing. These functions were most consistent with the model in which SRrp86 functions by interacting with and thereby modulating the activity of target proteins. To identify the specific proteins that interact with SRrp86, we used a yeast two-hybrid library screen and immunoprecipitation coupled to mass spectrometry. We show that SRrp86 interacts with all of the core SR proteins, as well as a subset of other splicing regulatory proteins, including SAF-B, hnRNP G, YB-1, and p72. In contrast to previous results that showed activation of SRp20 by SRrp86, we now show that SAF-B, hnRNP G, and 9G8 all antagonize the activity of SRrp86. Overall, we conclude that not only does SRrp86 regulate SR protein activity but that it is, in turn, regulated by other splicing factors to control alternative splice site selection.


2017 ◽  
Vol 37 (14) ◽  
Author(s):  
Camille Sayou ◽  
Gonzalo Millán-Zambrano ◽  
Helena Santos-Rosa ◽  
Elisabeth Petfalski ◽  
Samuel Robson ◽  
...  

ABSTRACT Histone methylation at H3K4 and H3K36 is commonly associated with genes actively transcribed by RNA polymerase II (RNAPII) and is catalyzed by Saccharomyces cerevisiae Set1 and Set2, respectively. Here we report that both methyltransferases can be UV cross-linked to RNA in vivo. High-throughput sequencing of the bound RNAs revealed strong Set1 enrichment near the transcription start site, whereas Set2 was distributed along pre-mRNAs. A subset of transcripts showed notably high enrichment for Set1 or Set2 binding relative to RNAPII, suggesting functional posttranscriptional interactions. In particular, Set1 was strongly bound to the SET1 mRNA, Ty1 retrotransposons, and noncoding RNAs from the ribosomal DNA (rDNA) intergenic spacers, consistent with its previously reported silencing roles. Set1 lacking RNA recognition motif 2 (RRM2) showed reduced in vivo cross-linking to RNA and reduced chromatin occupancy. In addition, levels of H3K4 trimethylation were decreased, whereas levels of dimethylation were increased. We conclude that RNA binding by Set1 contributes to both chromatin association and methyltransferase activity.


1998 ◽  
Vol 18 (11) ◽  
pp. 6756-6766 ◽  
Author(s):  
Tilmann Achsel ◽  
Katharina Ahrens ◽  
Hero Brahms ◽  
Stefan Teigelkamp ◽  
Reinhard Lührmann

ABSTRACT The human small nuclear ribonucleoprotein (snRNP) U5 is biochemically the most complex of the snRNP particles, containing not only the Sm core proteins but also 10 particle-specific proteins. Several of these proteins have sequence motifs which suggest that they participate in conformational changes of RNA and protein. Together, the specific proteins comprise 85% of the mass of the U5 snRNP particle. Therefore, protein-protein interactions should be highly important for both the architecture and the function of this particle. We investigated protein-protein interactions using both native and recombinant U5-specific proteins. Native U5 proteins were obtained by dissociation of U5 snRNP particles with the chaotropic salt sodium thiocyanate. A stable, RNA-free complex containing the 116-kDa EF-2 homologue (116kD), the 200kD RNA unwindase, the 220kD protein, which is the orthologue of the yeast Prp8p protein, and the U5-40kD protein was detected by sedimentation analysis of the dissociated proteins. By cDNA cloning, we show that the 40kD protein is a novel WD-40 repeat protein and is thus likely to mediate regulated protein-protein interactions. Additional biochemical analyses demonstrated that the 220kD protein binds simultaneously to the 40- and the 116kD proteins and probably also to the 200kD protein. Since the 220kD protein is also known to contact both the pre-mRNA and the U5 snRNA, it is in a position to relay the functional state of the spliceosome to the other proteins in the complex and thus modulate their activity.


2021 ◽  
Author(s):  
Xuan Ye ◽  
Wen Yang ◽  
Soon Yi ◽  
Yanan Zhao ◽  
Fan Yang ◽  
...  

The specificity of RNA-binding proteins for their target sequences varies considerably. Yet, it is not understood how certain proteins achieve markedly higher sequence specificity than most others. Here we show that the RNA Recognition Motif of RbFox accomplishes extraordinary sequence specificity by employing functionally and structurally distinct binding modes. Affinity measurements of RbFox for all binding site variants reveal the existence of two different binding modes. The first exclusively binds the cognate and a closely related RNA variant with high affinity. The second mode accommodates all other RNAs with greatly reduced affinity, thereby imposing large thermodynamic penalties on even near-cognate sequences. NMR studies indicate marked structural differences between the two binding modes, including large conformational rearrangements distant from the RNA binding site. Distinct binding modes by a single RNA binding module explain extraordinary sequence selectivity and reveal an unknown layer of functional diversity, cross talk and regulation for RNA-protein interactions.


mSphere ◽  
2019 ◽  
Vol 4 (4) ◽  
Author(s):  
Daniel Jaremko ◽  
Martin Ciganda ◽  
Linda Christen ◽  
Noreen Williams

ABSTRACT Eukaryotic ribosome biogenesis is an essential cellular process involving tightly coordinated assembly of multiple rRNA and protein components. Much of our understanding of this pathway has come from studies performed with yeast model systems. These studies have identified critical checkpoints in the maturation of the large ribosomal subunit (LSU/60S), one of which is the proper formation and incorporation of the 5S ribonucleoprotein complex (5S RNP). Research on the 5S RNP has identified a complex containing the four proteins L5, L11, Rpf2, and Rrs1 as well as 5S rRNA. Our laboratory has studied the 5S RNP in Trypanosoma brucei, a eukaryotic parasite, and identified the proteins P34 and P37 as essential, parasite-specific members of this complex. We have additionally identified homologues of L5, Rpf2, Rrs1, and 5S rRNA in T. brucei and characterized their roles in this essential process. In this study, we examined the T. brucei homologue of ribosomal protein L11 as a member of the 5S RNP. We showed that TbL11 is essential and that it is important for proper ribosome subunit formation and 60S rRNA processing. Additionally, we identified TbL11 interactions with TbL5 and TbRpf2, as well as novel interactions with the kinetoplast-specific proteins P34 and P37. These findings expand our understanding of a crucial process outside the context of model yeast organisms and highlight differences in an otherwise highly conserved process that could be used to develop future treatments against T. brucei. IMPORTANCE The human-pathogenic, eukaryotic parasite Trypanosoma brucei causes human and animal African trypanosomiases. Treatments for T. brucei suffer from numerous hurdles, including adverse side effects and developing resistance. Ribosome biogenesis is one critical process for T. brucei survival that could be targeted for new drug development. A critical checkpoint in ribosome biogenesis is formation of the 5S RNP, which we have shown involves the trypanosome-specific proteins P34 and P37 as well as homologues of Rpf2, Rrs1, and L5. We have identified parasite-specific characteristics of these proteins and involvement in key parts of ribosome biogenesis, making them candidates for future drug development. In this work, we characterized the T. brucei homologue of ribosomal protein L11. We show that it is essential for parasite survival and is involved in ribosome biogenesis and rRNA processing. Furthermore, we identified novel interactions with P34 and P37, characteristics that make this protein a potential target for novel chemotherapeutics.


mSphere ◽  
2019 ◽  
Vol 4 (4) ◽  
Author(s):  
Constance Rink ◽  
Noreen Williams

ABSTRACT Eukaryotic ribosome biogenesis is a complicated and highly conserved biological process. A critical step in ribosome biogenesis is the translocation of the immature ribosomal subunits from the nucleoplasm, across the nucleopore complex, to the cytoplasm where they undergo final maturation. Many nonribosomal proteins are needed to facilitate export of the ribosomal subunits, and one complex participating in export of the pre-60S in Saccharomyces cerevisiae is the heterodimer Mex67-Mtr2. In Trypanomsoma brucei, the process of ribosome biogenesis differs from the yeast process in key steps and is not yet fully characterized. However, our laboratory has previously identified the trypanosome-specific proteins P34/P37 and has shown that P34/P37 are necessary for the formation of the 5S ribonuclear particle (RNP) and for the nuclear export of the pre-60S subunit. We have also shown that loss of TbMex67 or TbMtr2 leads to aberrant ribosome formation, rRNA processing, and polysome formation in T. brucei. In this study, we characterize the interaction of TbMex67 and TbMtr2 with the components of the 5S RNP (P34/P37, L5 and 5S rRNA) of the 60S subunit. We demonstrate that TbMex67 directly interacts with P34 and L5 proteins as well as 5S rRNA, while TbMtr2 does not. Using protein sequence alignments and structure prediction modeling, we show that TbMex67 lacks the amino acids previously shown to be essential for binding to 5S rRNA in yeast and in general aligns more closely with the human orthologue (NXF1 or TAP). This work suggests that the T. brucei Mex67-Mtr2 binds ribosomal cargo differently from the yeast system. IMPORTANCE Trypanosoma brucei is the causative agent for both African sleeping sickness in humans and nagana in cattle. Ribosome biogenesis in these pathogens requires both conserved and trypanosome-specific proteins to coordinate in a complex pathway. We have previously shown that the trypanosome-specific proteins P34/P37 are essential to the interaction of the TbNmd3-TbXpoI export complex with the 60S ribosomal subunits, allowing their translocation across the nuclear envelope. Our recent studies show that the trypanosome orthologues of the auxiliary export proteins TbMex67-TbMtr2 are required for ribosome assembly, proper rRNA processing, and polysome formation. Here we show that TbMex67-TbMtr2 interact with members of the 60S ribosomal subunit 5S RNP. Although TbMex67 has a unique structure among the Mex67 orthologues and forms unique interactions with the 5S RNP, particularly with trypanosome-specific P34/P37, it performs a conserved function in ribosome assembly. These unique structures and parasite-specific interactions may provide new therapeutic targets against this important parasite.


2021 ◽  
Author(s):  
Saikat Bhattacharya ◽  
Suman Wang ◽  
Divya Reddy ◽  
Siyuan Shen ◽  
Ying Zhang ◽  
...  

The RNA recognition motif (RRM) binds to nucleic acids as well as proteins. More than one such domain is found in the pre-mRNA processing hnRNP proteins. While the mode of RNA recognition by RRMs is known, the molecular basis of their protein interaction remains obscure. Here we describe the mode of interaction between hnRNP L and LL with the methyltransferase SETD2. We demonstrate that for the interaction to occur, a leucine pair within a highly conserved stretch of SETD2 insert their side chains in hydrophobic pockets formed by hnRNP L RRM2. Notably, the structure also highlights that RRM2 can form a ternary complex with SETD2 and RNA. Remarkably, mutating the leucine pair in SETD2 also results in its reduced interaction with other hnRNPs. Importantly, the similarity that the mode of SETD2-hnRNP L interaction shares with other related protein-protein interactions reveals a conserved design by which splicing regulators interact with one another.


Sign in / Sign up

Export Citation Format

Share Document