scholarly journals Estradiol and Progesterone Strongly Inhibit the Innate Immune Response of Mononuclear Cells in Newborns

2011 ◽  
Vol 79 (7) ◽  
pp. 2690-2698 ◽  
Author(s):  
Eric Giannoni ◽  
Laurence Guignard ◽  
Marlies Knaup Reymond ◽  
Matthieu Perreau ◽  
Matthias Roth-Kleiner ◽  
...  

ABSTRACTNewborns are particularly susceptible to bacterial infections due to qualitative and quantitative deficiencies of the neonatal innate immune system. However, the mechanisms underlying these deficiencies are poorly understood. Given that fetuses are exposed to high concentrations of estradiol and progesterone during gestation and at time of delivery, we analyzed the effects of these hormones on the response of neonatal innate immune cells to endotoxin, bacterial lipopeptide, andEscherichia coliand group BStreptococcus, the two most common causes of early-onset neonatal sepsis. Here we show that at concentrations present in umbilical cord blood, estradiol and progesterone are as powerful as hydrocortisone for inhibition of cytokine production by cord blood mononuclear cells (CBMCs) and newborn monocytes. Interestingly, CBMCs and newborn monocytes are more sensitive to the effects of estradiol and progesterone than adult peripheral blood mononuclear cells and monocytes. This increased sensitivity is associated with higher expression levels of estrogen and membrane progesterone receptors but is independent of a downregulation of Toll-like receptor 2 (TLR2), TLR4, and myeloid differentiation primary response gene 88 in newborn cells. Estradiol and progesterone mediate their anti-inflammatory activity through inhibition of the NF-κB pathway but not the mitogen-activated protein kinase pathway in CBMCs. Altogether, these results suggest that elevated umbilical cord blood concentrations of estradiol and progesterone acting on mononuclear cells expressing high levels of steroid receptors contribute to impair innate immune responses in newborns. Therefore, intrauterine exposure to estradiol and progesterone may participate in increasing susceptibility to infection during the neonatal period.

2017 ◽  
Vol 24 (4) ◽  
pp. 187-194 ◽  
Author(s):  
Yetty Ramli ◽  
Ahmad Sulaiman Alwahdy ◽  
Mohammad Kurniawan ◽  
Berry Juliandi ◽  
Puspita Eka Wuyung ◽  
...  

2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Y. O. Mukhamedshina ◽  
Z. E. Gilazieva ◽  
S. S. Arkhipova ◽  
L. R. Galieva ◽  
E. E. Garanina ◽  
...  

In this study, we examined the efficacy of human umbilical cord blood mononuclear cells (hUCB-MCs), genetically modified with the VEGF and GDNF genes using adenoviral vectors, on posttraumatic regeneration after transplantation into the site of spinal cord injury (SCI) in rats. Thirty days after SCI, followed by transplantation of nontransduced hUCB-MCs, we observed an improvement inH(latency period, LP) andM(Amax)waves, compared to the group without therapy after SCI. For genetically modified hUCB-MCs, there was improvement inAmaxofMwave and LP of both theMandHwaves. The ratio betweenAmaxof theHandMwaves (Hmax/Mmax) demonstrated that transplantation into the area of SCI of genetically modified hUCB-MCs was more effective than nontransduced hUCB-MCs. Spared tissue and myelinated fibers were increased at day 30 after SCI and transplantation of hUCB-MCs in the lateral and ventral funiculi 2.5 mm from the lesion epicenter. Transplantation of hUCB-MCs genetically modified with the VEGF and GNDF genes significantly increased the number of spared myelinated fibers (22-fold,P>0.01) in the main corticospinal tract compared to the nontransduced ones. HNA+cells with the morphology of phagocytes and microglia-like cells were found as compact clusters or cell bridges within the traumatic cavities that were lined by GFAP+host astrocytes. Our results show that hUCB-MCs transplanted into the site of SCI improved regeneration and that hUCB-MCs genetically modified with the VEGF and GNDF genes were more effective than nontransduced hUCB-MCs.


2018 ◽  
Vol 375 (2) ◽  
pp. 437-449 ◽  
Author(s):  
Suneel Rallapalli ◽  
Soma Guhathakurta ◽  
Shalini Narayan ◽  
Dillip Kumar Bishi ◽  
Venkatesh Balasubramanian ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document