scholarly journals Plasmodium falciparum Merozoite Surface Protein 1 (MSP-1)-MSP-3 Chimeric Protein: Immunogenicity Determined with Human-Compatible Adjuvants and Induction of Protective Immune Response

2009 ◽  
Vol 78 (2) ◽  
pp. 872-883 ◽  
Author(s):  
Suman Mazumdar ◽  
Paushali Mukherjee ◽  
Syed Shams Yazdani ◽  
S. K. Jain ◽  
Asif Mohmmed ◽  
...  

ABSTRACT A chimeric gene, MSP-Fu24 , was constructed by genetically coupling immunodominant, conserved regions of the two leading malaria vaccine candidates, Plasmodium falciparum merozoite surface protein 1 (C-terminal 19-kDa region [PfMSP-119]) and merozoite surface protein 3 (11-kDa conserved region [PfMSP-311]). The recombinant MSP-Fu24 protein was produced in Escherichia coli cells and purified to homogeneity by a two-step purification process with a yield of ∼30 mg/liter. Analyses of conformational properties of MSP-Fu24 using PfMSP-119-specific monoclonal antibody showed that the conformational epitopes of PfMSP-119 that may be critical for the generation of the antiparasitic immune response remained intact in the fusion protein. Recombinant MSP-Fu24 was highly immunogenic in mice and in rabbits when formulated with two different human-compatible adjuvants and induced an immune response against both PfMSP-119 and PfMSP-311. Purified anti-MSP-Fu24 antibodies showed invasion inhibition of P. falciparum 3D7 and FCR parasites, and this effect was found to be dependent on antibodies specific for the PfMSP-119 component. The protective potential of MSP-Fu24 was demonstrated by in vitro parasite growth inhibition using an antibody-dependent cell inhibition (ADCI) assay with anti-MSP-Fu24 antibodies. Overall, the antiparasitic activity was mediated by a combination of growth-inhibitory antibodies generated by both the PfMSP-119 and PfMSP-311 components of the MSP-Fu24 protein. The antiparasitic activities elicited by anti-MSP-Fu24 antibodies were comparable to those elicited by antibodies generated with immunization with a physical mixture of two component antigens, PfMSP-119 and PfMSP-311. The fusion protein induces a protective immune response with human-compatible adjuvants and may form a part of a multicomponent malaria vaccine.

2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Fernanda G. Versiani ◽  
Maria E. Almeida ◽  
Luis A. Mariuba ◽  
Patricia P. Orlandi ◽  
Paulo A. Nogueira

The human malaria is widely distributed in the Middle East, Asia, the western Pacific, and Central and South America.Plasmodium vivaxstarted to have the attention of many researchers since it is causing diseases to millions of people and several reports of severe malaria cases have been noticed in the last few years. The lack ofin vitrocultures forP. vivaxrepresents a major delay in developing a functional malaria vaccine. One of the major candidates to antimalarial vaccine is the merozoite surface protein-1 (MSP1), which is expressed abundantly on the merozoite surface and capable of activating the host protective immunity. Studies have shown that MSP-1 possesses highly immunogenic fragments, capable of generating immune response and protection in natural infection in endemic regions. This paper shows humoral immune response to different proteins of PvMSP1 and the statement of N-terminal to be added to the list of potential candidates for malaria vivax vaccine.


2014 ◽  
Vol 21 (6) ◽  
pp. 886-897 ◽  
Author(s):  
Puneet K. Gupta ◽  
Paushali Mukherjee ◽  
Shikha Dhawan ◽  
Alok K. Pandey ◽  
Suman Mazumdar ◽  
...  

ABSTRACTAPlasmodium falciparumchimeric protein, PfMSP-Fu24, was constructed by genetically coupling immunodominant, conserved regions of two merozoite surface proteins, the 19-kDa region C-terminal region of merozoite surface protein 1 (PfMSP-119) and an 11-kDa conserved region of merozoite surface protein 3 (PfMSP-311), to augment the immunogenicity potential of these blood-stage malaria vaccine candidates. Here we describe an improved, efficient, and scalable process to produce high-quality PfMSP-Fu24. The chimeric protein was produced inEscherichia coliSHuffle T7 ExpresslysYcells that express disulfide isomerase DsbC. A two-step purification process comprising metal affinity followed by cation exchange chromatography was developed, and we were able to obtain PfMSP-Fu24with purity above 99% and with a considerable yield of 23 mg/liter. Immunogenicity of PfMSP-Fu24formulated with several adjuvants, including Adjuplex, Alhydrogel, Adjuphos, Alhydrogel plus glucopyranosyl lipid adjuvant, aqueous (GLA-AF), Adjuphos+GLA-AF, glucopyranosyl lipid adjuvant-stable emulsion (GLA-SE), and Freund's adjuvant, was evaluated. PfMSP-Fu24formulated with GLA-SE and Freund's adjuvant in mice and with Alhydrogel and Freund's adjuvant in rabbits produced high titers of PfMSP-119and PfMSP-311-specific functional antibodies. Some of the adjuvant formulations induced inhibitory antibody responses and inhibitedin vitrogrowth ofP. falciparumparasites in the presence as well as in the absence of human monocytes. These results suggest that PfMSP-Fu24can form a constituent of a multistage malaria vaccine.


2021 ◽  
Author(s):  
S Jake Gonzales ◽  
Kathleen N Clarke ◽  
Gayani Batugedara ◽  
Ashley E Braddom ◽  
Rolando Garza ◽  
...  

Memory B cells (MBCs) and plasma antibodies against Plasmodium falciparum merozoite antigens are important components of the protective immune response against malaria. To gain understanding of how responses against P. falciparum develop in these two arms of the humoral immune system, we evaluated MBC and antibody responses against the most abundant merozoite antigen, merozoite surface protein 1 (MSP1), in individuals from a region in Uganda with high P. falciparum transmission. Our results showed that MSP1-specific B cells in adults with immunological protection against malaria were predominantly IgG+ classical MBCs, while children with incomplete protection mainly harbored IgM+ MSP1-specific classical MBCs. In contrast, anti-MSP1 plasma IgM reactivity was minimal in both children and adults. Instead, both groups showed high plasma IgG reactivity against MSP1 and whole merozoites, with broadening of the response against non-3D7 strains in adults. The antibodies encoded by MSP1-specific IgG+ MBCs carried high levels of amino acid substitutions and recognized relatively conserved epitopes on the highly variable MSP1 protein. Proteomics analysis of MSP119-specific IgG in plasma of an adult revealed a limited repertoire of anti-MSP1 antibodies, most of which were IgG1 or IgG3. Similar to MSP1-specific MBCs, anti-MSP1 IgGs had relatively high levels of amino acid substitutions and their sequences were predominantly found in classical MBCs, not atypical MBCs. Collectively, these results showed evolution of the MSP1-specific humoral immune response with cumulative P. falciparum exposure, with a shift from IgM+ to IgG+ B cell memory, diversification of B cells from germline, and stronger recognition of MSP1 variants by the plasma IgG repertoire.


2006 ◽  
Vol 74 (2) ◽  
pp. 1313-1322 ◽  
Author(s):  
Ute Woehlbier ◽  
Christian Epp ◽  
Christian W. Kauth ◽  
Rolf Lutz ◽  
Carole A. Long ◽  
...  

ABSTRACT The 190-kDa merozoite surface protein 1 (MSP-1) of Plasmodium falciparum, an essential component in the parasite's life cycle, is a primary candidate for a malaria vaccine. Rabbit antibodies elicited by the heterologously produced MSP-1 processing products p83, p30, p38, and p42, derived from strain 3D7, were analyzed for the potential to inhibit in vitro erythrocyte invasion by the parasite and parasite growth. Our data show that (i) epitopes recognized by antibodies, which inhibit parasite replication, are distributed throughout the entire MSP-1 molecule; (ii) when combined, antibodies specific for different regions of MSP-1 inhibit in a strictly additive manner; (iii) anti-MSP-1 antibodies interfere with erythrocyte invasion as well as with the intraerythrocytic growth of the parasite; and (iv) antibodies raised against MSP-1 of strain 3D7 strongly cross-inhibit replication of the heterologous strain FCB-1. Accordingly, anti-MSP-1 antibodies appear to be capable of interfering with parasite multiplication at more than one level. Since the overall immunogenicity profile of MSP-1 in rabbits closely resembles that found in sera of Aotus monkeys immunized with parasite-derived MSP-1 and of humans semi-immune to malaria from whom highly inhibiting antigen-specific antibodies were recovered, we consider the findings reported here to be relevant for the development of MSP-1-based vaccines against malaria.


2003 ◽  
Vol 71 (12) ◽  
pp. 6766-6774 ◽  
Author(s):  
Sanjay Singh ◽  
Michael C. Kennedy ◽  
Carole A. Long ◽  
Allan J. Saul ◽  
Louis H. Miller ◽  
...  

ABSTRACT Protection against Plasmodium falciparum can be induced by vaccination in animal models with merozoite surface protein 1 (MSP1), which makes this protein an attractive vaccine candidate for malaria. In an attempt to produce a product that is easily scaleable and inexpensive, we expressed the C-terminal 42 kDa of MSP1 (MSP142) in Escherichia coli, refolded the protein to its native form from insoluble inclusion bodies, and tested its ability to elicit antibodies with in vitro and in vivo activities. Biochemical, biophysical, and immunological characterization confirmed that refolded E. coli MSP142 was homogeneous and highly immunogenic. In a formulation suitable for human use, rabbit antibodies were raised against refolded E. coli MSP142 and tested in vitro in a P. falciparum growth invasion assay. The antibodies inhibited the growth of parasites expressing either homologous or heterologous forms of P. falciparum MSP142. However, the inhibitory activity was primarily a consequence of antibodies directed against the C- terminal 19 kDa of MSP1 (MSP119). Vaccination of nonhuman primates with E. coli MSP142 in Freund's adjuvant protected six of seven Aotus monkeys from virulent infection with P. falciparum. The protection correlated with antibody-dependent mechanisms. Thus, this new construct, E. coli MSP142, is a viable candidate for human vaccine trials.


Sign in / Sign up

Export Citation Format

Share Document