scholarly journals Analysis of Antibodies Directed against Merozoite Surface Protein 1 of the Human Malaria Parasite Plasmodium falciparum

2006 ◽  
Vol 74 (2) ◽  
pp. 1313-1322 ◽  
Author(s):  
Ute Woehlbier ◽  
Christian Epp ◽  
Christian W. Kauth ◽  
Rolf Lutz ◽  
Carole A. Long ◽  
...  

ABSTRACT The 190-kDa merozoite surface protein 1 (MSP-1) of Plasmodium falciparum, an essential component in the parasite's life cycle, is a primary candidate for a malaria vaccine. Rabbit antibodies elicited by the heterologously produced MSP-1 processing products p83, p30, p38, and p42, derived from strain 3D7, were analyzed for the potential to inhibit in vitro erythrocyte invasion by the parasite and parasite growth. Our data show that (i) epitopes recognized by antibodies, which inhibit parasite replication, are distributed throughout the entire MSP-1 molecule; (ii) when combined, antibodies specific for different regions of MSP-1 inhibit in a strictly additive manner; (iii) anti-MSP-1 antibodies interfere with erythrocyte invasion as well as with the intraerythrocytic growth of the parasite; and (iv) antibodies raised against MSP-1 of strain 3D7 strongly cross-inhibit replication of the heterologous strain FCB-1. Accordingly, anti-MSP-1 antibodies appear to be capable of interfering with parasite multiplication at more than one level. Since the overall immunogenicity profile of MSP-1 in rabbits closely resembles that found in sera of Aotus monkeys immunized with parasite-derived MSP-1 and of humans semi-immune to malaria from whom highly inhibiting antigen-specific antibodies were recovered, we consider the findings reported here to be relevant for the development of MSP-1-based vaccines against malaria.

Parasitology ◽  
1994 ◽  
Vol 109 (4) ◽  
pp. 413-421 ◽  
Author(s):  
H. A. Babiker ◽  
L. C. Ranford-Cartwright ◽  
D. Currie ◽  
J. D. Charlwood ◽  
P. Billingsley ◽  
...  

SUMMARYThe genetic structure of a population of the malaria parasite Plasmodium falciparum has been examined in a village in Tanzania. Seventeen alleles of the merozoite surface protein MSP-1 and 23 of MSP-2 were detected by the polymerase chain reaction (PCR) among the blood parasites of the inhabitants. Most infections contained mixtures of genetically distinct parasite clones. PCR was then used to examine individual P. falciparum oocysts, the products of fertilization events, in wild-caught mosquitoes. Forty-five out of 71 oocysts were heterozygous for one or both genes, showing that crossing between clones was taking place frequently, following uptake of mixtures of gametocytes by the mosquitoes. The frequency of heterozygous forms showed that random mating events probably occurred within mosquito bloodmeals between gametes belonging to different parasite clones.


2009 ◽  
Vol 77 (12) ◽  
pp. 5659-5667 ◽  
Author(s):  
Maria Lazarou ◽  
José A. Guevara Patiño ◽  
Richard M. Jennings ◽  
Richard S. McIntosh ◽  
Jianguo Shi ◽  
...  

ABSTRACT Antigen-specific antibodies (Abs) to the 19-kDa carboxy-terminal region of Plasmodium falciparum merozoite surface protein 1 (MSP119) play an important role in protective immunity to malaria. Mouse monoclonal Abs (MAbs) 12.10 and 12.8 recognizing MSP119 can inhibit red cell invasion by interfering with MSP1 processing on the merozoite surface. We show here that this ability is dependent on the intact Ab since Fab and F(ab′)2 fragments derived from MAb 12.10, although capable of binding MSP1 with high affinity and competing with the intact antibody for binding to MSP1, were unable to inhibit erythrocyte invasion or MSP1 processing. The DNA sequences of the variable (V) regions of both MAbs 12.8 and 12.10 were obtained, and partial amino acid sequences of the same regions were confirmed by mass spectrometry. Human chimeric Abs constructed by using these sequences, which combine the original mouse V regions with human γ1 and γ3 constant regions, retain the ability to bind to both parasites and recombinant MSP119, and both chimeric human immunoglobulin G1s (IgG1s) were at least as good at inhibiting erythrocyte invasion as the parental murine MAbs 12.8 and 12.10. Furthermore, the human chimeric Abs of the IgG1 class (but not the corresponding human IgG3), induced significant NADPH-mediated oxidative bursts and degranulation from human neutrophils. These chimeric human Abs will enable investigators to examine the role of human Fcγ receptors in immunity to malaria using a transgenic parasite and mouse model and may prove useful in humans for neutralizing parasites as an adjunct to antimalarial drug therapy.


2009 ◽  
Vol 78 (2) ◽  
pp. 872-883 ◽  
Author(s):  
Suman Mazumdar ◽  
Paushali Mukherjee ◽  
Syed Shams Yazdani ◽  
S. K. Jain ◽  
Asif Mohmmed ◽  
...  

ABSTRACT A chimeric gene, MSP-Fu24 , was constructed by genetically coupling immunodominant, conserved regions of the two leading malaria vaccine candidates, Plasmodium falciparum merozoite surface protein 1 (C-terminal 19-kDa region [PfMSP-119]) and merozoite surface protein 3 (11-kDa conserved region [PfMSP-311]). The recombinant MSP-Fu24 protein was produced in Escherichia coli cells and purified to homogeneity by a two-step purification process with a yield of ∼30 mg/liter. Analyses of conformational properties of MSP-Fu24 using PfMSP-119-specific monoclonal antibody showed that the conformational epitopes of PfMSP-119 that may be critical for the generation of the antiparasitic immune response remained intact in the fusion protein. Recombinant MSP-Fu24 was highly immunogenic in mice and in rabbits when formulated with two different human-compatible adjuvants and induced an immune response against both PfMSP-119 and PfMSP-311. Purified anti-MSP-Fu24 antibodies showed invasion inhibition of P. falciparum 3D7 and FCR parasites, and this effect was found to be dependent on antibodies specific for the PfMSP-119 component. The protective potential of MSP-Fu24 was demonstrated by in vitro parasite growth inhibition using an antibody-dependent cell inhibition (ADCI) assay with anti-MSP-Fu24 antibodies. Overall, the antiparasitic activity was mediated by a combination of growth-inhibitory antibodies generated by both the PfMSP-119 and PfMSP-311 components of the MSP-Fu24 protein. The antiparasitic activities elicited by anti-MSP-Fu24 antibodies were comparable to those elicited by antibodies generated with immunization with a physical mixture of two component antigens, PfMSP-119 and PfMSP-311. The fusion protein induces a protective immune response with human-compatible adjuvants and may form a part of a multicomponent malaria vaccine.


1994 ◽  
Vol 180 (1) ◽  
pp. 389-393 ◽  
Author(s):  
M J Blackman ◽  
T J Scott-Finnigan ◽  
S Shai ◽  
A A Holder

When merozoites of the malaria parasite Plasmodium falciparum are released from infected erythrocytes and invade new red cells, a component of a protein complex derived from the merozoite surface protein 1 (MSP-1) precursor undergoes a single proteolytic cleavage known as secondary processing. This releases the complex from the parasite surface, except for a small membrane-bound fragment consisting of two epidermal growth factor (EGF)-like domains, which is the only part of MSP-1 to be carried into invaded erythrocytes. We report that, a group of monoclonal antibodies specific for epitopes within the EGF-like domains, some interfere with secondary processing whereas others do not. Those that most effectively inhibit processing have previously been shown to prevent invasion. Other antibodies, some of which can block this inhibition, not only do not prevent invasion but are carried into the host cell bound to the merozoite surface. These observations unequivocally demonstrate that the binding of antibody to the COOH-terminal region of MSP-1 on the merozoite surface may not be sufficient to prevent erythrocyte invasion, and show that the interaction of different antibodies with adjacent epitopes within the EGF-like domains of MSP-1 can have distinct biochemical effects on the molecule. Inhibition of MSP-1 processing on merozoites may be a mechanism by which protective antibodies interrupt the asexual cycle of the malaria parasite.


2003 ◽  
Vol 71 (12) ◽  
pp. 6766-6774 ◽  
Author(s):  
Sanjay Singh ◽  
Michael C. Kennedy ◽  
Carole A. Long ◽  
Allan J. Saul ◽  
Louis H. Miller ◽  
...  

ABSTRACT Protection against Plasmodium falciparum can be induced by vaccination in animal models with merozoite surface protein 1 (MSP1), which makes this protein an attractive vaccine candidate for malaria. In an attempt to produce a product that is easily scaleable and inexpensive, we expressed the C-terminal 42 kDa of MSP1 (MSP142) in Escherichia coli, refolded the protein to its native form from insoluble inclusion bodies, and tested its ability to elicit antibodies with in vitro and in vivo activities. Biochemical, biophysical, and immunological characterization confirmed that refolded E. coli MSP142 was homogeneous and highly immunogenic. In a formulation suitable for human use, rabbit antibodies were raised against refolded E. coli MSP142 and tested in vitro in a P. falciparum growth invasion assay. The antibodies inhibited the growth of parasites expressing either homologous or heterologous forms of P. falciparum MSP142. However, the inhibitory activity was primarily a consequence of antibodies directed against the C- terminal 19 kDa of MSP1 (MSP119). Vaccination of nonhuman primates with E. coli MSP142 in Freund's adjuvant protected six of seven Aotus monkeys from virulent infection with P. falciparum. The protection correlated with antibody-dependent mechanisms. Thus, this new construct, E. coli MSP142, is a viable candidate for human vaccine trials.


Sign in / Sign up

Export Citation Format

Share Document