scholarly journals IRE1α-driven inflammation promotes clearance of Citrobacter rodentium infection

2021 ◽  
Author(s):  
Lydia A. Sweet ◽  
Sharon K. Kuss-Duerkop ◽  
A. Marijke Keestra-Gounder

Endoplasmic reticulum (ER) stress is intimately linked with inflammation in response to pathogenic infections. ER stress occurs when cells experience a buildup of misfolded or unfolded protein during times of perturbation, such as infections, which facilitates the unfolded protein response (UPR). The UPR involves multiple host pathways in an attempt to re-establish homeostasis, which oftentimes leads to inflammation and cell death if unresolved. The UPR is activated to help resolve some bacterial infections, and the IRE1α pathway is especially critical in mediating inflammation. To understand the role of the IRE1α pathway of the UPR during enteric bacterial infection, we employed Citrobacter rodentium to study host-pathogen interactions in intestinal epithelial cells and the murine gastrointestinal (GI) tract. C. rodentium is an enteric mouse pathogen that is similar to the human pathogens enteropathogenic and enterohemorrhagic Escherichia coli (EPEC and EHEC, respectively), which have limited small animal models. Here, we demonstrate that both C. rodentium and EPEC induced the UPR in intestinal epithelial cells. UPR induction during C. rodentium infection correlated with the onset of inflammation in bone marrow-derived macrophages (BMDMs). Our previous work implicated IRE1α and NOD1/2 in ER stress-induced inflammation, which we observed were also required for pro-inflammatory gene induction during C. rodentium infection. C. rodentium induced IRE1α-dependent inflammation in mice, and inhibiting IRE1α led to a dysregulated inflammatory response and delayed clearance of C. rodentium . This study demonstrates that ER stress aids inflammation and clearance of C. rodentium through a mechanism involving the IRE1α-NOD1/2 axis.

2015 ◽  
Vol 83 (8) ◽  
pp. 3213-3223 ◽  
Author(s):  
Wei Zhang ◽  
Jiang-Yuan Du ◽  
Qing Yu ◽  
Jun-O Jin

Interleukin-7 (IL-7) engages multiple mechanisms to overcome chronic viral infections, but the role of IL-7 in bacterial infections, especially enteric bacterial infections, remains unclear. Here we characterized the previously unexplored role of IL-7 in the innate immune response to the attaching and effacing bacteriumCitrobacter rodentium.C. rodentiuminfection induced IL-7 production from intestinal epithelial cells (IECs). IL-7 production from IECs in response toC. rodentiumwas dependent on gamma interferon (IFN-γ)-producing NK1.1+cells and IL-12. Treatment with anti-IL-7Rα antibody duringC. rodentiuminfection resulted in a higher bacterial burden, enhanced intestinal damage, and greater weight loss and mortality than observed with the control IgG treatment. IEC-produced IL-7 was only essential for protective immunity againstC. rodentiumduring the first 6 days after infection. An impaired bacterial clearance upon IL-7Rα blockade was associated with a significant decrease in macrophage accumulation and activation in the colon. Moreover,C. rodentium-induced expansion and activation of intestinal CD4+lymphoid tissue inducer (LTi) cells was completely abrogated by IL-7Rα blockade. Collectively, these data demonstrate that IL-7 is produced by IECs in response toC. rodentiuminfection and plays a critical role in the protective immunity against this intestinal attaching and effacing bacterium.


2019 ◽  
Author(s):  
Michael J. Grey ◽  
Eva Cloots ◽  
Mariska S. Simpson ◽  
Nicole LeDuc ◽  
Yevgeniy V. Serebrenik ◽  
...  

ABSTRACTIRE1β is an ER stress sensor uniquely expressed in epithelial cells lining mucosal surfaces. Here, we show that intestinal epithelial cells expressing IRE1β have an attenuated response to ER stress. IRE1β assembles with and blocks activation of the closely related and most evolutionarily ancient stress-sensor IRE1α to suppress stress-induced xbp1 splicing, a key mediator of the unfolded protein response. In comparison, IRE1β has weak xbp1 splicing activity, largely explained by a non-conserved amino acid in the kinase domain that impairs its phosphorylation and restricts oligomerization. This enables IRE1β to act as a dominant negative suppressor of IRE1α. The inhibitory effect is amplified in cells by disrupting an XBP1-dependent feedback loop regulating stress-induced expression of IRE1α. Thus IRE1β functions to negatively regulate IRE1α signaling, perhaps enabling intestinal epithelial cells to manage the response to chronic stress stimuli at the host-environment interface.


2020 ◽  
Vol 20 (2) ◽  
pp. 157-166
Author(s):  
Yuan Yang ◽  
Jin Huang ◽  
Jianzhong Li ◽  
Huansheng Yang ◽  
Yulong Yin

Background: Stearic acid (SA), a saturated long-chain fatty acid consisting of 18 carbon atoms, is widely found in feed ingredients, such as corn, soybeans, and wheat. However, the roles of SA in the renewal of intestinal epithelial cells remain unclear. Methods and Results: In the present study, we found that 0.01-0.1 mM SA promoted IPEC-J2 cell differentiation and did not affect IPEC-J2 cell viability. In addition, the results showed that the viability of IPEC-J2 cells was inhibited by SA in a time- and dose-dependent manner at high concentrations. Flow cytometry and western blot analysis suggested that SA induced apoptosis, autophagy and ER stress in cells. In addition, the amounts of triglyceride were significantly increased upon challenge with SA. Moreover, the decrease in the viability of cells induced by SA could be attenuated by 4-PBA, an inhibitor of ER stress. Conclusion: In summary, SA accelerated IPEC-J2 cell differentiation at 0.01-0.1 mM. Furthermore, SA induced IPEC-J2 cell apoptosis and autophagy by causing ER stress.


2016 ◽  
Vol 311 (5) ◽  
pp. L846-L854 ◽  
Author(s):  
Hang Nguyen ◽  
Bruce D. Uhal

Recent work from this laboratory showed that endoplasmic reticulum (ER) stress-induced apoptosis of alveolar epithelial cells (AECs) is regulated by the autocrine angiotensin (ANG)II/ANG1-7 system. The proteasome inhibitor MG132 or surfactant protein C (SP-C) BRICHOS domain mutation G100S induced apoptosis in human AECs by activating the proapoptotic cathepsin D and reducing antiapoptotic angiotensin converting enzyme-2 (ACE-2). This study tested the hypothesis that ER stress-induced apoptosis of human AECs might be mediated by influence of the unfolded protein response (UPR) on the autocrine ANGII/ANG1-7 system. A549 cells were challenged with MG132 or SP-C BRICHOS domain mutant G100S to induce ER stress and activation of UPR pathways. The results showed that either MG132 or G100S SP-C mutation activated all three canonical pathways of the UPR (IRE1/XBP1, ATF6, and PERK/eIF2α), which led to a significant increase in cathepsin D or in TACE (an ACE-2 ectodomain shedding enzyme) and eventually caused AEC apoptosis. However, ER stress-induced AEC apoptosis could be prevented by chemical chaperone or by UPR blockers. It is also suggested that ATF6 and IRE1 pathways might play important role in regulation of angiotensin system. These data demonstrate that ER stress induces apoptosis in human AECs through mediation of UPR pathways, which in turn regulate the autocrine ANGII/ANG1-7 system. They also demonstrated that ER stress-induced AEC apoptosis can be blocked by inhibition of UPR signaling pathways.


2020 ◽  
Vol 219 (2) ◽  
Author(s):  
Michael J. Grey ◽  
Eva Cloots ◽  
Mariska S. Simpson ◽  
Nicole LeDuc ◽  
Yevgeniy V. Serebrenik ◽  
...  

IRE1β is an ER stress sensor uniquely expressed in epithelial cells lining mucosal surfaces. Here, we show that intestinal epithelial cells expressing IRE1β have an attenuated unfolded protein response to ER stress. When modeled in HEK293 cells and with purified protein, IRE1β diminishes expression and inhibits signaling by the closely related stress sensor IRE1α. IRE1β can assemble with and inhibit IRE1α to suppress stress-induced XBP1 splicing, a key mediator of the unfolded protein response. In comparison to IRE1α, IRE1β has relatively weak XBP1 splicing activity, largely explained by a nonconserved amino acid in the kinase domain active site that impairs its phosphorylation and restricts oligomerization. This enables IRE1β to act as a dominant-negative suppressor of IRE1α and affect how barrier epithelial cells manage the response to stress at the host–environment interface.


2021 ◽  
Author(s):  
Charles P Hinzman ◽  
Shivani Bansal ◽  
Yaoxiang Li ◽  
Anton Iliuk ◽  
Michael Girgis ◽  
...  

Although cancer-derived extracellular vesicles (cEVs) are thought to play a pivotal role in promoting cancer progression events, their precise effect on neighboring normal cells is unknown. In this study, we investigated the impact of pancreatic cancer ductal adenocarcinoma (PDAC) derived EVs on recipient non-tumorigenic pancreatic normal epithelial cells upon internalization. We show that PDAC cEVs increase the proliferation and invasive capability of treated normal cells. We further demonstrate that cEVs induce endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) in treated normal pancreatic epithelial cells within 24 hours. Subsequently, these cells release several inflammatory cytokines. Leveraging a layered multi-omics approach, we analyzed EV cargo from a panel of 6 PDAC and 2 normal pancreas cell lines, using multiple EV isolation methods. We found that cEVs were enriched for an array of biomolecules which can induce or regulate ER stress and the UPR, including palmitic acid, sphingomyelins, metabolic regulators of tRNA charging and proteins which regulate trafficking and degradation. We further show that palmitic acid, at doses relevant to those found in cEVs, is sufficient to induce ER stress in normal pancreas cells. These results suggest that cEV cargo packaging may be designed to disseminate proliferative and invasive characteristics upon internalization by distant recipient normal cells, hitherto unreported. This study is among the first to highlight a major role for PDAC cEVs to induce stress in treated normal pancreas cells that may modulate a systemic response leading to altered phenotypes. For the first time, our study implicates cEV transported palmitic acid as a potential driver in this process. These findings highlight the importance of EVs in mediating disease etiology and open potential areas of investigation toward understanding the role of cEV lipids in promoting cell transformation in the surrounding microenvironment.


Sign in / Sign up

Export Citation Format

Share Document