scholarly journals Characterization of Heat-Stable (STa) Toxoids of Enterotoxigenic Escherichia coli Fused to Double Mutant Heat-Labile Toxin Peptide in Inducing Neutralizing Anti-STa Antibodies

2014 ◽  
Vol 82 (5) ◽  
pp. 1823-1832 ◽  
Author(s):  
Xiaosai Ruan ◽  
Donald C. Robertson ◽  
James P. Nataro ◽  
John D. Clements ◽  
Weiping Zhang

ABSTRACTA long-standing challenge in developing vaccines against enterotoxigenicEscherichia coli(ETEC), the most common bacteria causing diarrhea in children of developing countries and travelers to these countries, is to protect against heat-stable toxin type Ib (STa or hSTa). STa and heat-labile toxin (LT) are virulence determinants in ETEC diarrhea. LT antigens are often used in vaccine development, but STa has not been included because of its poor immunogenicity and potent toxicity. Toxic STa is not safe for vaccines, but only STa possessing toxicity is believed to be able to induce neutralizing antibodies. However, recent studies demonstrated that nontoxic STa derivatives (toxoids), after being fused to an LT protein, induced neutralizing antibodies and suggested that different STa toxoids fused to an LT protein might exhibit different STa antigenic propensity. In this study, we selected 14 STa toxoids from a mini-STa toxoid library based on toxicity reduction and reactivity to anti-native STa antibodies, and genetically fused each toxoid to a monomeric double mutant LT (dmLT) peptide for 14 STa-toxoid-dmLT toxoid fusions. These toxoid fusions were used to immunize mice and were characterized for induction of anti-STa antibody response. The results showed that different STa toxoids (in fusions) varied greatly in anti-STa antigenicity. Among them, STaN12S, STaN12T, and STaA14Hwere the top toxoids in inducing anti-STa antibodies.In vitroneutralization assays indicated that antibodies induced by the 3×STaN12S-dmLT fusion antigen exhibited the greatest neutralizing activity against STa toxin. These results suggested 3×STaN12S-dmLT is a preferred fusion antigen to induce an anti-STa antibody response and provided long-awaited information for effective ETEC vaccine development.

2019 ◽  
Vol 87 (7) ◽  
Author(s):  
Yuleima Diaz ◽  
Morten L. Govasli ◽  
Ephrem Debebe Zegeye ◽  
Halvor Sommerfelt ◽  
Hans Steinsland ◽  
...  

ABSTRACT Infection with enterotoxigenic Escherichia coli (ETEC) is a common cause of childhood diarrhea in low- and middle-income countries, as well as of diarrhea among travelers to these countries. In children, ETEC strains secreting the heat-stable toxin (ST) are the most pathogenic, and there are ongoing efforts to develop vaccines that target ST. One important challenge for ST vaccine development is to construct immunogens that do not elicit antibodies that cross-react with guanylin and uroguanylin, which are endogenous peptides involved in regulating the activity of the guanylate cyclase-C (GC-C) receptor. We immunized mice with both human ST (STh) and porcine ST (STp) chemically coupled to bovine serum albumin, and the resulting sera neutralized the toxic activities of both STh and STp. This suggests that a vaccine based on either ST variant can confer cross-protection. However, several anti-STh and anti-STp sera cross-reacted with the endogenous peptides, suggesting that the ST sequence must be altered to reduce the risk of unwanted cross-reactivity. Epitope mapping of four monoclonal anti-STh and six anti-STp antibodies, all of which neutralized both STh and STp, revealed that most epitopes appear to have at least one amino acid residue shared with guanylin or uroguanylin. Despite this, only one monoclonal antibody displayed demonstrable cross-reactivity to the endogenous peptides, suggesting that targeted mutations of a limited number of ST residues may be sufficient to obtain a safe ST-based vaccine.


2006 ◽  
Vol 74 (2) ◽  
pp. 869-875 ◽  
Author(s):  
Kenneth P. Allen ◽  
Mildred M. Randolph ◽  
James M. Fleckenstein

ABSTRACT Enterotoxigenic Escherichia coli (ETEC) infections are a significant cause of diarrheal disease and infant mortality in developing countries. Studies of ETEC pathogenesis relevant to vaccine development have been greatly hampered by the lack of a suitable small-animal model of infection with human ETEC strains. Here, we demonstrate that adult immunocompetent outbred mice can be effectively colonized with the prototypical human ETEC H10407 strain (colonization factor antigen I; heat-labile and heat-stable enterotoxin positive) and that production of heat-labile holotoxin provides a significant advantage in colonization of the small intestine in this model.


2020 ◽  
Vol 86 (24) ◽  
Author(s):  
Ti Lu ◽  
Rodney A. Moxley ◽  
Weiping Zhang

ABSTRACT Enterotoxigenic Escherichia coli (ETEC) strains producing K88 (F4) or F18 fimbriae and enterotoxins are the predominant cause of pig postweaning diarrhea (PWD). We recently identified neutralizing epitopes of fimbriae K88 and F18, heat-labile toxin (LT), heat-stable toxins type I (STa) and type II (STb), and Shiga toxin 2e (Stx2e). In this study, we explored a novel epitope- and structure-based vaccinology platform, multiepitope fusion antigen (MEFA), for PWD vaccine development. By using an epitope substitution LT toxoid, which lacks enterotoxicity but retains immunogenicity, as the backbone to present neutralizing epitopes of two ETEC fimbriae and four toxins, we generated PWD fimbria-toxin MEFA to mimic epitope native antigenicity. We then examined MEFA protein immunogenicity and evaluated MEFA application in PWD vaccine development. Mice subcutaneously immunized with PWD MEFA protein developed strong IgG responses to K88, F18, LT, and STb and moderate responses to the toxins Stx2e and STa. Importantly, MEFA-induced antibodies inhibited adherence of K88 or F18 fimbrial bacteria to pig intestinal cells and also neutralized LT, STa, STb, and Stx2e toxicity. These results indicated that PWD fimbria-toxin MEFA induced neutralizing antibodies against an unprecedent two fimbriae and four toxins and strongly suggested a potential application of this MEFA protein in developing a broadly protective PWD vaccine. IMPORTANCE ETEC-associated postweaning diarrhea (PWD) causes significant economic losses to swine producers worldwide. Currently, there is no effective prevention against PWD. A vaccine that blocks ETEC fimbriae (K88 and F18) from attaching to host receptors and prevents enterotoxins from stimulating water hypersecretion in pig small intestinal epithelial cells can effectively protect against PWD and significantly improves pig health and well-being. The fimbria-toxin MEFA generated from this study induced neutralizing antibodies against both ETEC fimbriae and all four ETEC toxins, suggesting a great potential of this fimbria-toxin MEFA in PWD vaccine development and further supporting the general application of this novel MEFA vaccinology platform for multivalent vaccine development.


2010 ◽  
Vol 17 (8) ◽  
pp. 1223-1231 ◽  
Author(s):  
Weiping Zhang ◽  
David H. Francis

ABSTRACT Enterotoxigenic Escherichia coli (ETEC)-associated diarrhea causes a substantial economic loss to swine producers worldwide. The majority of ETEC strains causing porcine diarrhea, especially postweaning diarrhea (PWD), produce heat-labile toxin (LT) and heat-stable toxin b (STb). LT is commonly used in vaccine development, but STb has not been included because of its poor immunogenicity. As a virulence factor in porcine diarrhea, STb needs to be included as an antigen for development of broad-spectrum vaccines. In this study, we used an LT toxoid (LTR192G [hereafter, LT192]) derived from porcine ETEC to carry a mature STb peptide for LT192-STb fusions to enhance STb immunogenicity for potential vaccine application. Anti-LT and anti-STb antibodies were detected in immunized rabbits and pigs. In addition, when challenged with an STb-positive ETEC strain, all 10 suckling piglets borne by immunized gilts remained healthy, whereas 7 out 9 piglets borne by unimmunized gilts developed moderate diarrhea. This study indicates that the LT192-STb fusion enhanced anti-STb immunogenicity and suggests the LT192-STb fusion antigen can be used in future vaccine development against porcine ETEC diarrhea.


1998 ◽  
Vol 61 (2) ◽  
pp. 141-145 ◽  
Author(s):  
HAU-YANG TSEN ◽  
LIANG-ZHAO JIAN ◽  
WAN-RONG CHI

Enterotoxigenic Escherichia coli (ETEC) strains which produce heat labile and/or heat stable toxins (LT and ST) may cause diarrhea in humans and farm animals. Using PCR primers specific for the LT I and ST II genes, a multiplex PCR system which allows detection of LT I- and ST II-producing ETEC strains was developed. When skim milk was used for a PCR assay, it was found that if target cells in the sample were precultured in MacConkey broth for 8 h prior to PCR as few as 100 cells per ml of the sample could be detected. Without the preculture step, 104 CFU of target cells per 0.2 g of porcine stool specimen were required to generate visible PCR products. The multiplex PCR System can be used for rapid testing of fecal specimens, food and possibly environmental samples for the presence of ETEC strains.


2013 ◽  
Vol 20 (7) ◽  
pp. 1076-1083 ◽  
Author(s):  
Emad A. Hashish ◽  
Chengxian Zhang ◽  
Xiaosai Ruan ◽  
David E. Knudsen ◽  
Christopher C. Chase ◽  
...  

ABSTRACTDiarrhea is one of the most important bovine diseases. EnterotoxigenicEscherichia coli(ETEC) and bovine viral diarrhea virus (BVDV) are the major causes of diarrhea in calves and cattle. ETEC expressing K99 (F5) fimbriae and heat-stable type Ia (STa) toxin are the leading bacteria causing calf diarrhea, and BVDV causes diarrhea and other clinical illnesses in cattle of all ages. It is reported that maternal immunization with K99 fimbrial antigens provides passive protection to calves against K99 fimbrial ETEC and that BVDV major structural protein E2 elicits antibodies neutralizing against BVDV viral infection. Vaccines inducing anti-K99 and anti-STa immunity would protect calves more effectively against ETEC diarrhea, and those also inducing anti-E2 neutralizing antibodies would protect calves and cattle against diarrhea caused by both ETEC and BVDV. In this study, we used the ETEC K99 major subunit FanC as a backbone, genetically embedded the STa toxoid STaP12Fand the most-antigenic B-cell epitope and T-cell epitope predicted from the BVDV E2 glycoprotein into FanC for the multivalent antigen FanC-STa-E2, and examined immunogenicity of this multivalent antigen to assess vaccine potential against bovine diarrhea. Mice intraperitoneally (i.p.) immunized with this multivalent antigen developed anti-K99, anti-STa, and anti-BVDV antibodies. Moreover, elicited antibodies showed neutralization activities, as they inhibited adherence of K99 fimbrialE. coli, neutralized STa toxin, and prevented homologous BVDV viral infectionin vitro. Results from this study suggest that this multiepitope fusion antigen can potentially be developed as a vaccine for broad protection against bovine diarrhea and that the multiepitope fusion strategy may be generally applied for multivalent vaccine development against heterogeneous pathogens.


Sign in / Sign up

Export Citation Format

Share Document