scholarly journals Direct activation of human monocyte-derived macrophages by a bacterial glycoprotein extract inhibits the intracellular multiplication of virulent Legionella pneumophila serogroup 1.

1987 ◽  
Vol 55 (9) ◽  
pp. 2234-2239 ◽  
Author(s):  
P Rajagopalan ◽  
E Dournon ◽  
J L Vildé ◽  
J J Pocidalo
1987 ◽  
Vol 166 (5) ◽  
pp. 1377-1389 ◽  
Author(s):  
N R Payne ◽  
M A Horwitz

We have examined receptors mediating phagocytosis of the intracellular bacterial pathogen, Legionella pneumophila. Three mAbs against the type 3 complement receptor (CR3), which recognizes C3bi, inhibit adherence of L. pneumophila to monocytes by 64 +/- 8% to 74 +/- 11%. An mAb against the type 1 complement receptor (CR1), which recognizes C3b, inhibits adherence by 68 +/- 1%. mAbs against other monocyte surface antigens do not significantly influence adherence. Monocytes plated on substrates of L. pneumophila membranes modulate their CR1 and CR3 receptors but not Fc receptors; such monocytes bind 70% fewer C3b-coated erythrocytes and 53% fewer C3bi-coated erythrocytes than control monocytes. Adherence of L. pneumophila to monocytes in nonimmune sera is dependent on heat-labile serum opsonins; adherence is markedly reduced in heat-inactivated serum (84% reduction) or buffer alone (97% reduction) compared with fresh serum. mAbs against CR1 and CR3 receptors also inhibit L. pneumophila intracellular multiplication and protect monocyte monolayers from destruction by this bacterium. This study demonstrates that human monocyte complement receptors, CR1 and CR3, mediate phagocytosis of L. pneumophila. These receptors may play a general role in mediating phagocytosis of intracellular pathogens.


1998 ◽  
Vol 42 (12) ◽  
pp. 3153-3156 ◽  
Author(s):  
Aldona L. Baltch ◽  
Raymond P. Smith ◽  
Mary A. Franke ◽  
Phyllis B. Michelsen

ABSTRACT The antibacterial activities of levofloxacin, erythromycin, and rifampin against intracellular Legionella pneumophilaL-1033, serogroup 1, were studied. In an in vitro system utilizing adherent human monocytes, L. pneumophila L-1033, a phagocytosis time period of 1 h, and antibiotic (levofloxacin, erythromycin, and/or rifampin) at 1 to 10 times the MIC, the CFU/ml values for the monocyte lysate were determined during 0- to 4-day time periods. The decrease in CFU/ml with levofloxacin at pH 7.4 was rapid, occurring within 24 h, and was drug concentration dependent (P < 0.01). The decrease in CFU with rifampin was first observed at 48 h (P < 0.01), while only a minimal decrease in CFU/ml was observed with erythromycin. Combination of levofloxacin and rifampin and of levofloxacin and erythromycin at ten times their MICs significantly decreased the CFU/ml value (P < 0.01), to the value attained by levofloxacin alone, while combination of rifampin and erythromycin did not. Removal of levofloxacin after 24 h of incubation resulted in regrowth ofL. pneumophila L-1033, while a continued slow decrease in CFU/ml was seen following rifampin removal; CFU/ml values were unaffected by the removal of erythromycin. At 4 days, and even in assays performed following antibiotic removal, the CFU/ml value continued to be lower in the levofloxacin and rifampin assays than in the assays with erythromycin. Levofloxacin had a significantly higher bactericidal activity against L. pneumophila L-1033 than erythromycin or rifampin. In these assays, the addition of erythromycin or rifampin did not affect the antibacterial activity of levofloxacin.


1983 ◽  
Vol 158 (6) ◽  
pp. 2108-2126 ◽  
Author(s):  
M A Horwitz

The interactions between the L. pneumophila phagosome and monocyte lysosomes were investigated by prelabeling the lysosomes with thorium dioxide, an electron-opaque colloidal marker, and by acid phosphatase cytochemistry. Phagosomes containing live L. pneumophila did not fuse with secondary lysosomes at 1 h after entry into monocytes or at 4 or 8 h after entry by which time the ribosome-lined L. pneumophila replicative vacuole had formed. In contrast, the majority of phagosomes containing formalin-killed L. pneumophila, live Streptococcus pneumoniae, and live Escherichia coli had fused with secondary lysosomes by 1 h after entry into monocytes. Erythromycin, a potent inhibitor of bacterial protein synthesis, at a concentration that completely inhibits L. pneumophila intracellular multiplication, had no influence on fusion of L. pneumophila phagosomes with secondary lysosomes. However, coating live L. pneumophila with antibody or with antibody and complement partially overcame the inhibition of fusion. Also activating the monocytes promoted fusion of a small proportion of phagosomes containing live L. pneumophila with secondary lysosomes. Acid phosphatase cytochemistry revealed that phagosomes containing live L. pneumophila did not fuse with either primary or secondary lysosomes. In contrast to phagosomes containing live bacteria, the majority of phagosomes containing formalin-killed L. pneumophila were fused with lysosomes by acid phosphatase cytochemistry. The capacity of L. pneumophila to inhibit phagosome-lysosome fusion may be a critical mechanism by which the bacterium resists monocyte microbicidal effects.


2010 ◽  
Vol 426 (3) ◽  
pp. 281-292 ◽  
Author(s):  
Ramon Hurtado-Guerrero ◽  
Tal Zusman ◽  
Shalini Pathak ◽  
Adel F. M. Ibrahim ◽  
Sharon Shepherd ◽  
...  

Legionnaires' disease is caused by a lethal colonization of alveolar macrophages with the Gram-negative bacterium Legionella pneumophila. LpGT (L. pneumophila glucosyltransferase; also known as Lgt1) has recently been identified as a virulence factor, shutting down protein synthesis in the human cell by specific glucosylation of EF1A (elongation factor 1A), using an unknown mode of substrate recognition and a retaining mechanism for glycosyl transfer. We have determined the crystal structure of LpGT in complex with substrates, revealing a GT-A fold with two unusual protruding domains. Through structure-guided mutagenesis of LpGT, several residues essential for binding of the UDP-glucose-donor and EF1A-acceptor substrates were identified, which also affected L. pneumophila virulence as demonstrated by microinjection studies. Together, these results suggested that a positively charged EF1A loop binds to a negatively charged conserved groove on the LpGT structure, and that two asparagine residues are essential for catalysis. Furthermore, we showed that two further L. pneumophila glycosyltransferases possessed the conserved UDP-glucose-binding sites and EF1A-binding grooves, and are, like LpGT, translocated into the macrophage through the Icm/Dot (intracellular multiplication/defect in organelle trafficking) system.


2012 ◽  
Vol 58 (4) ◽  
pp. 490-501
Author(s):  
Tian Qin ◽  
Ken-ichiro Iida ◽  
Zhenyu Piao ◽  
Susumu Shiota ◽  
Hongyu Ren ◽  
...  

Legionella pneumophila grows in amoebae and has achieved the ability to grow at various temperatures, although the mechanisms controlling this ability remain poorly understood. The Icm/Dot type IVB secretion system is composed of more than 25 proteins and is known to be essential for intracellular growth. The role of the icmN gene in intracellular multiplication and the effects of culture temperatures on it are not precisely understood. We conducted our investigation using an icmN mutant made by gene replacement mutagenesis. Intracellular growth of the mutant was impaired both in mammalian macrophages and amoeba at 37 °C. In particular, intracellular growth in amoebae was completely impaired at 25 °C. It was found that genes from icmN to icmC formed an operon, i.e., icmN, -M, -L, -E, -G, -C,, and the promoter activity of the icmN operon was stronger at 25 than at 37 °C. It was suggested that icmM and its downstream genes had a secondary promoter that enables icmN mutant grow in amoebae at lower temperatures and macrophages at 37 °C. These results show that the icmN promoter has a low temperature inducible nature, and gene products of the icmN operon require high expression for bacterial proliferation at low temperatures within amoeba.


1991 ◽  
Vol 142 (6) ◽  
pp. 677-685 ◽  
Author(s):  
K Nahapetian ◽  
O Challemel ◽  
D Beurtin ◽  
S Dubrou ◽  
P Gounon ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document