scholarly journals Relationship of tumor necrosis factor alpha, the nitric oxide synthase pathway, and lipopolysaccharide to the killing of gamma interferon-treated macrophage-like RAW264.7 cells by Rickettsia prowazekii.

1994 ◽  
Vol 62 (6) ◽  
pp. 2568-2574 ◽  
Author(s):  
J Turco ◽  
H H Winkler
1993 ◽  
Vol 265 (5) ◽  
pp. L462-L471 ◽  
Author(s):  
T. J. Ferro ◽  
D. C. Hocking ◽  
A. Johnson

We postulated that tumor necrosis factor-alpha (TNF) “primes” the lung for the development of pulmonary vasoconstriction and edema by inducing the release of polymorphonuclear leukocyte (PMN)-derived reactive oxidant species (ROS). Guinea pigs were injected with TNF (1.6 x 10(5) U/kg ip), and the lungs isolated 18 h later. Compared with controls, TNF pretreatment resulted in 1) greater increases in lung weight and capillary pressure in response to the thromboxane A2 mimetic U-46619 (365 pmol/min) and 2) an increase in the dose of acetylcholine (ACh) causing 50% of maximal dilation (EC50). The vascular effects of TNF were associated with 1) decreased lung effluent nitrite (NO2-, oxidation product of nitric oxide), 2) increased lung effluent superoxide (O2-), and 3) increased lung myeloperoxidase (MPO). Superoxide dismutase (SOD, 10 U/ml) prevented 1) the effects of TNF on the hemodynamic responses to U-46619 and ACh and 2) the TNF-induced decrease in NO2-. The effects of TNF on lung MPO and effluent O2- were prevented using cyclophosphamide intraperitoneally (100 mg/kg 5 days before, and 50 mg/kg 1 day before, treatment with TNF or control). The data suggest that ROS generated from PMN mediate the decrease in nitric oxide and altered pulmonary vasoreactivity induced by TNF.


Sign in / Sign up

Export Citation Format

Share Document