scholarly journals Monophosphoryl lipid A enhances both humoral and cell-mediated immune responses to DNA vaccination against human immunodeficiency virus type 1.

1997 ◽  
Vol 65 (9) ◽  
pp. 3520-3528 ◽  
Author(s):  
S Sasaki ◽  
T Tsuji ◽  
K Hamajima ◽  
J Fukushima ◽  
N Ishii ◽  
...  
1998 ◽  
Vol 66 (2) ◽  
pp. 823-826 ◽  
Author(s):  
Shin Sasaki ◽  
Kenji Hamajima ◽  
Jun Fukushima ◽  
Atsushi Ihata ◽  
Norihisa Ishii ◽  
...  

ABSTRACT We compared immune responses to intranasal and intramuscular DNA vaccinations against human immunodeficiency virus type 1 with monophosphoryl lipid A (MPL) used as an adjuvant. Both routes of vaccination resulted in similar levels of cell-mediated immunity, but the intestinal secretory immunoglobulin A response was higher following intranasal immunization than after intramuscular immunization. MPL demonstrated its adjuvanticity in vaccination by both routes.


2005 ◽  
Vol 79 (8) ◽  
pp. 4927-4935 ◽  
Author(s):  
B. Poon ◽  
J. T. Safrit ◽  
H. McClure ◽  
C. Kitchen ◽  
J. F. Hsu ◽  
...  

ABSTRACT The lack of success of subunit human immunodeficiency virus type 1 (HIV-1) vaccines to date suggests that multiple components or a complex virion structure may be required. We previously demonstrated retention of the major conformational epitopes of HIV-1 envelope following thermal treatment of virions. Moreover, antibody binding to some of these epitopes was significantly enhanced following thermal treatment. These included the neutralizing epitopes identified by monoclonal antibodies 1b12, 2G12, and 17b, some of which have been postulated to be partially occluded or cryptic in native virions. Based upon this finding, we hypothesized that a killed HIV vaccine could be derived to elicit protective humoral immune responses. Shedding of HIV-1 envelope has been described for some strains of HIV-1 and has been cited as one of the major impediments to developing an inactivated HIV-1 vaccine. In the present study, we demonstrate that treatment of virions with low-dose formaldehyde prior to thermal inactivation retains the association of viral envelope with virions. Moreover, mice and nonhuman primates vaccinated with formaldehyde-treated, thermally inactivated virions produce antibodies capable of neutralizing heterologous strains of HIV in peripheral blood mononuclear cell-, MAGI cell-, and U87-based infectivity assays. These data indicate that it is possible to create an immunogen by using formaldehyde-treated, thermally inactivated HIV-1 virions to induce neutralizing antibodies. These findings have broad implications for vaccine development.


2001 ◽  
Vol 184 (4) ◽  
pp. 488-496 ◽  
Author(s):  
Pauline N. M. Mwinzi ◽  
Diana M. S. Karanja ◽  
Daniel G. Colley ◽  
Alloys S. S. Orago ◽  
W. Evan Secor

2004 ◽  
Vol 78 (2) ◽  
pp. 1020-1025 ◽  
Author(s):  
Bruno Garulli ◽  
Yoshihiro Kawaoka ◽  
Maria R. Castrucci

ABSTRACT The humoral and cellular immune responses in the genital mucosa likely play an important role in the prevention of sexually transmitted infections, including infection with human immunodeficiency virus type 1 (HIV-1). Here we show that vaginal infection of progesterone-treated BALB/c mice with a recombinant influenza virus bearing the immunodominant P18IIIB cytotoxic T-lymphocyte (CTL) epitope of the gp160 envelope protein from an HIV-1 IIIB isolate (P18IIIB; RIQRGPGRAFVTIGK) can induce a specific immune response in regional mucosal lymph nodes, as well as in a systemic site (the spleen). A single inoculation of mice with the recombinant influenza virus induced long-lasting (at least 5 months) antigen-specific CTL memory detectable as a rapid recall of effector CTLs upon vaginal infection with recombinant vaccinia virus expressing HIV-1 IIIB envelope gene products. Long-term antigen-specific CTL memory was also induced and maintained in distant mucosal tissues when mice were intranasally immunized with the recombinant influenza virus. These results indicate that mucosal immunization and, in particular, local vaginal immunization with recombinant influenza virus can provide strong, durable immune responses in the female genital tract of mice.


2007 ◽  
Vol 88 (10) ◽  
pp. 2774-2779 ◽  
Author(s):  
Mattias N. E. Forsell ◽  
Gerald M. McInerney ◽  
Pia Dosenovic ◽  
Åsa S. Hidmark ◽  
Christopher Eriksson ◽  
...  

Viral vectors encoding heterologous vaccine antigens are potent inducers of cellular immune responses, but they are generally less efficient at stimulating humoral immunity. To improve the induction of antibody responses by Semliki Forest virus-based vaccines, a vector encoding a translation-enhancer element and a novel internal signal sequence for increased expression and secretion of soluble antigens was designed. Approximately tenfold more human immunodeficiency virus type 1 gp120 was secreted into culture supernatants of infected cells using the enhanced vector compared with the parental vector. This translated into a significant increase in gp120-specific antibodies in immunized mice, suggesting that antigen-expression levels from the parental vector are limiting for induction of antibody responses. These data encourage the use of the enhanced vector for elicitation of immune responses against heterologous antigens during vaccination.


Sign in / Sign up

Export Citation Format

Share Document