scholarly journals Expression of Anaplasma marginale Major Surface Protein 2 Variants during Persistent Cyclic Rickettsemia

1998 ◽  
Vol 66 (3) ◽  
pp. 1200-1207 ◽  
Author(s):  
Dorothy M. French ◽  
Terry F. McElwain ◽  
Travis C. McGuire ◽  
Guy H. Palmer

ABSTRACT Anaplasma marginale is an intraerythrocytic rickettsial pathogen of cattle in which infection persists for the life of the animal. Persistent A. marginale infection is characterized by repetitive rickettsemic cycles which we hypothesize reflect emergence of A. marginale antigenic variants. In this study, we determined whether variants of major surface protein 2 (MSP-2), a target of protective immunity encoded by a polymorphic multigene family, arise during persistent rickettsemia. By using a quantitative competitive PCR to identify rickettsemic cycles,msp-2 transcripts expressed in vivo were isolated from peak rickettsemia of sequential cycles. Cloning and sequencing ofmsp-2 cDNA revealed that genetic variants of MSP-2 emerge representing a minimum of four genetic variant types in each cycle during persistent infection. Two-color immunofluorescence using variant-specific antibody showed that emergence of MSP-2 variants resulted in expression of a minimum of three antigenic types of MSP-2 within one rickettsemic cycle. Therefore immune control of each cycle would require responses to an antigenically diverse A. marginale population. These findings demonstrate that polymorphic MSP-2 variants emerge during cyclic rickettsemia in persistent A. marginale infection and suggest that emergent variants play an important role in persistence.

2000 ◽  
Vol 68 (1) ◽  
pp. 270-280 ◽  
Author(s):  
Wenbin Tuo ◽  
Guy H. Palmer ◽  
Travis C. McGuire ◽  
Daming Zhu ◽  
Wendy C. Brown

ABSTRACT Anaplasma marginale is a tick-transmitted pathogen of cattle closely related to the human ehrlichiae, Ehrlichia chaffeensis and the agent of human granulocytic ehrlichiosis (HGE). These pathogens have in common a structurally conserved outer membrane protein (OMP) designated the major surface protein 2 (MSP-2) in A. marginale and HGE and OMP-1 in E. chaffeensis. Protective immunity against ehrlichial pathogens is believed to require induction of gamma interferon (IFN-γ) and opsonizing immunoglobulin (Ig) subclasses directed against OMP epitopes that, in concert, activate macrophages for phagocytosis and killing. Because interleukin-12 (IL-12) acts as an adjuvant for protein immunization to induce IFN-γ and protective immunity against intracellular pathogens, we hypothesized that as an adjuvant with MSP-2, IL-12 would augment type 1 recall responses to A. marginale. IL-12 was coadsorbed with MSP-2 to alum and shown to significantly enhance IFN-γ production by lymph node cells (LNC) and LNC-derived CD4+ T-cell lines from immunized calves following recall stimulation with A. marginale. LNC proliferation and IL-2 production were also enhanced in IL-12-treated calves. Elevated recall proliferative responses by peripheral blood mononuclear cells were still evident 9 months after immunization. Serum IgG levels were consistently increased in IL-12 immunized calves, predominantly due to higher IgG1 responses. The results support the use of IL-12 coadsorbed with OMP of ehrlichial pathogens in alum to amplify both antibody and type-1 cytokine responses important for protective immunity.


Vaccine ◽  
2010 ◽  
Vol 28 (21) ◽  
pp. 3741-3747 ◽  
Author(s):  
Susan M. Noh ◽  
Yan Zhuang ◽  
James E. Futse ◽  
Wendy C. Brown ◽  
Kelly A. Brayton ◽  
...  

2001 ◽  
Vol 69 (11) ◽  
pp. 6853-6862 ◽  
Author(s):  
Wendy C. Brown ◽  
Guy H. Palmer ◽  
Harris A. Lewin ◽  
Travis C. McGuire

ABSTRACT Native major surface protein 1 (MSP1) of the ehrlichial pathogenAnaplasma marginale induces protective immunity in calves challenged with homologous and heterologous strains. MSP1 is a heteromeric complex of a single MSP1a protein covalently associated with MSP1b polypeptides, of which at least two (designated MSP1F1 and MSP1F3) in the Florida strain are expressed. Immunization with recombinant MSP1a and MSP1b alone or in combination fails to provide protection. The protective immunity in calves immunized with native MSP1 is associated with the development of opsonizing and neutralizing antibodies, but CD4+ T-lymphocyte responses have not been evaluated. CD4+ T lymphocytes participate in protective immunity to ehrlichial pathogens through production of gamma interferon (IFN-γ), which promotes switching to high-affinity immunoglobulin G (IgG) and activation of phagocytic cells to produce nitric oxide. Thus, an effective vaccine for A. marginaleand related organisms should contain both T- and B-lymphocyte epitopes that induce a strong memory response that can be recalled upon challenge with homologous and heterologous strains. This study was designed to determine the relative contributions of MSP1a and MSP1b proteins, which contain both variant and conserved amino acid sequences, in stimulating memory CD4+ T-lymphocyte responses in calves immunized with native MSP1. Peripheral blood mononuclear cells and CD4+ T-cell lines from MSP1-immunized calves proliferated vigorously in response to the immunizing strain (Florida) and heterologous strains of A. marginale. The conserved MSP1-specific response was preferentially directed to the carboxyl-terminal region of MSP1a, which stimulated high levels of IFN-γ production by CD4+ T cells. In contrast, there was either weak or no recognition of MSP1b proteins. Paradoxically, all calves developed high titers of IgG antibodies to both MSP1a and MSP1b polypeptides. These findings suggest that in calves immunized with MSP1 heteromeric complex, MSP1a-specific T lymphocytes may provide help to MSP1b-specific B lymphocytes. The data provide a basis for determining whether selected MSP1a CD4+ T-lymphocyte epitopes and selected MSP1a and MSP1b B-lymphocyte epitopes presented on the same molecule can stimulate a protective immune response.


2004 ◽  
Vol 72 (12) ◽  
pp. 7360-7366 ◽  
Author(s):  
Jeffrey R. Abbott ◽  
Guy H. Palmer ◽  
Chris J. Howard ◽  
Jayne C. Hope ◽  
Wendy C. Brown

ABSTRACT Organisms in the genus Anaplasma express an immunodominant major surface protein 2 (MSP2), composed of a central hypervariable region (HVR) flanked by highly conserved regions. Throughout Anaplasma marginale infection, recombination results in the sequential appearance of novel MSP2 variants and subsequent control of rickettsemia by the immune response, leading to persistent infection. To determine whether immune evasion and selection for variant organisms is associated with a predominant response against HVR epitopes, T-cell and linear B-cell epitopes were localized by measuring peripheral blood gamma interferon-secreting cells, proliferation, and antibody binding to 27 overlapping peptides spanning MSP2 in 16 cattle. Similar numbers of MSP2-specific CD4+ T-cell epitopes eliciting responses of similar magnitude were found in conserved and hypervariable regions. T-cell epitope clusters recognized by the majority of animals were identified in the HVR (amino acids [aa] 171 to 229) and conserved regions (aa 101 to 170 and 272 to 361). In contrast, linear B-cell epitopes were concentrated in the HVR, residing within hydrophilic sequences. The pattern of recognition of epitope clusters by T cells and of HVR epitopes by B cells is consistent with the influence of protein structure on epitope recognition.


2006 ◽  
Vol 101 (5) ◽  
pp. 511-516 ◽  
Author(s):  
Virgínia MG Silva ◽  
Flábio R Araújo ◽  
Claudio R Madruga ◽  
Cleber O Soares ◽  
Raul H Kessler ◽  
...  

2002 ◽  
Vol 88 (3) ◽  
pp. 275-285 ◽  
Author(s):  
José de la Fuente ◽  
Ronald A Van Den Bussche ◽  
Jose C Garcia-Garcia ◽  
Sergio D Rodrı́guez ◽  
Miguel A Garcı́a ◽  
...  

2007 ◽  
Vol 14 (3) ◽  
pp. 262-268 ◽  
Author(s):  
N. I. Strik ◽  
A. R. Alleman ◽  
A. F. Barbet ◽  
H. L. Sorenson ◽  
H. L. Wamsley ◽  
...  

ABSTRACT Major surface protein 5 (Msp5) of Anaplasma marginale is highly conserved in the genus Anaplasma and the antigen used in a commercially available competitive enzyme-linked immunosorbent assay (cELISA) for serologic identification of cattle with anaplasmosis. This study analyzes the degrees of conservation of Msp5 among various isolates of Anaplasma phagocytophilum and the extent of serologic cross-reactivity between recombinant Msp5 (rMsp5) of Anaplasma marginale and A. phagocytophilum. The msp5 genes from various isolates of A. phagocytophilum were sequenced and compared. rMsp5 proteins of A. phagocytophilum and A. marginale were used separately in an indirect ELISA to detect cross-reactivity in serum samples from humans and dogs infected with A. phagocytophilum and cattle infected with A. marginale. Serum samples were also tested with a commercially available competitive ELISA that uses monoclonal antibody ANAF16C1. There were 100% sequence identities in the msp5 genes among all of the A. phagocytophilum isolates from the United States and a horse isolate from Sweden. Sheep isolates from Norway and dog isolates from Sweden were 99% identical to one another but differed in 17 base pairs from the United States isolates and the horse isolate. Serologic cross-reactivity was identified when serum samples from cattle infected with A. marginale were reacted with rMsp5 of A. phagocytophilum and when serum samples from humans and dogs infected with A. phagocytophilum were reacted with rMsp5 of A. marginale in an indirect-ELISA format. Serum samples from dogs or humans infected with A. phagocytophilum did not cross-react with rMsp5 of A. marginale when tested with the commercially available cELISA. These results suggest that rMsp5 of A. phagocytophilum is highly conserved among United States and European isolates and that serologic distinction between A. phagocytophilum and A. marginale infections cannot be accomplished if rMsp5 from either organism is used in an indirect ELISA.


2007 ◽  
Vol 119 (2-4) ◽  
pp. 382-390 ◽  
Author(s):  
José de la Fuente ◽  
Paula Ruybal ◽  
Moses S. Mtshali ◽  
Victoria Naranjo ◽  
Li Shuqing ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document