scholarly journals Immunity to Onchocerciasis: Cells from Putatively Immune Individuals Produce Enhanced Levels of Interleukin-5, Gamma Interferon, and Granulocyte-Macrophage Colony-Stimulating Factor in Response to Onchocerca volvulus Larval and Male Worm Antigens

2000 ◽  
Vol 68 (4) ◽  
pp. 1905-1911 ◽  
Author(s):  
Prasad S. D. Turaga ◽  
Tracy J. Tierney ◽  
Kristine E. Bennett ◽  
Maggie C. McCarthy ◽  
Scott C. Simonek ◽  
...  

ABSTRACT Antigen-specific interleukin-5 (IL-5), gamma interferon (IFN-γ), and granulocyte-macrophage colony-stimulating factor (GM-CSF) responses in individuals living in an area of hyperendemicity for onchocerciasis in Cameroon were examined. The responses against antigens prepared fromOnchocerca volvulus third-stage larvae (L3), molting L3 (mL3), and crude extract from adult males (M-OvAg) were compared to the responses against antigens from adult female worms and skin microfilariae. Cytokine responses for the putatively immune individuals (PI) and the infected individuals (INF) were compared. A differential cytokine profile of IL-5 (Th2 phenotype) and IFN-γ (Th1 phenotype) was found in these individuals in response to the antigens. In both the PI and the INF, Th2 responses against all the antigens tested were dominant. However, in the PI group as a whole, there was an enhanced Th2 response against the larval antigens and the adult male and adult female antigens, and a Th1 response in a subgroup of the PI (27 to 54.5%) against L3, mL3, and M-OvAg antigens was present. While the PI produced significantly higher levels of GM-CSF against L3, mL3, and M-OvAg antigens than the INF, there was no difference in the GM-CSF responses of the groups against the other antigens. The present study indicated that, in comparison to the INF, the PI have distinct larva-specific and adult male-specific cytokine responses, thus supporting the premise that immunological studies of the PI would lead to the identification of immune mechanisms and the target genes that play a role in protective immunity.

2001 ◽  
Vol 69 (1) ◽  
pp. 129-136 ◽  
Author(s):  
Julie Riopel ◽  
MiFong Tam ◽  
Karkada Mohan ◽  
Michael W. Marino ◽  
Mary M. Stevenson

ABSTRACT The contribution of granulocyte-macrophage colony-stimulating factor (GM-CSF), a hematopoietic and immunoregulatory cytokine, to resistance to blood-stage malaria was investigated by infecting GM-CSF-deficient (knockout [KO]) mice with Plasmodium chabaudi AS. KO mice were more susceptible to infection than wild-type (WT) mice, as evidenced by higher peak parasitemia, recurrent recrudescent parasitemia, and high mortality. P. chabaudiAS-infected KO mice had impaired splenomegaly and lower leukocytosis but equivalent levels of anemia compared to infected WT mice. Both bone marrow and splenic erythropoiesis were normal in infected KO mice. However, granulocyte-macrophage colony formation was significantly decreased in these tissues of uninfected and infected KO mice, and the numbers of macrophages in the spleen and peritoneal cavity were significantly lower than in infected WT mice. Serum levels of gamma interferon (IFN-γ) were found to be significantly higher in uninfected KO mice, and the level of this cytokine was not increased during infection. In contrast, IFN-γ levels were significantly above normal levels in infected WT mice. During infection, tumor necrosis factor alpha (TNF-α) levels were significantly increased in KO mice and were significantly higher than TNF-α levels in infected WT mice. Our results indicate that GM-CSF contributes to resistance to P. chabaudi AS infection and that it is involved in the development of splenomegaly, leukocytosis, and granulocyte-macrophage hematopoiesis. GM-CSF may also regulate IFN-γ and TNF-α production and activity in response to infection. The abnormal responses seen in infected KO mice may be due to the lack of GM-CSF during development, to the lack of GM-CSF in the infected mature mice, or to both.


Blood ◽  
1995 ◽  
Vol 86 (9) ◽  
pp. 3507-3516 ◽  
Author(s):  
KA Scoggan ◽  
AW Ford-Hutchinson ◽  
DW Nicholson

Cytokines can stimulate eosinophils to produce cysteinyl leukotrienes (LTs) in the lung that provoke tissue destruction associated with asthma. Priming of an eosinophilic substrain of HL-60 cells (HL-60#7) with recombinant human granulocyte-macrophage colony-stimulating factor (rhGM-CSF) before ionophore challenge was found to produce an apparent 45% increase in total LT production in a dose-dependent manner (ED50 = 150 pmol/L) that could be accounted for by a decrease in the time required for maximal formation of LTs. GM-CSF had no effect on the kinetic parameters of LTC4 synthase and therefore probably acts upstream of this catalytic event. Incubation with interleukin-5 (IL-5), however, had no effect on LT biosynthesis. This differential priming ability was not a consequence of different receptor populations or differences in the affinity or stability of the ligand-receptor complexes of GM-CSF and IL-5. GM-CSF and IL-5 each displayed similar populations of high-affinity binding sites and neither GM-CSF nor IL-5 were able to cross-compete for the other's receptor binding sites. Analysis of phosphotyrosine patterns suggest that IL-5 is incapable of transducing a signal in eosinophilic HL-60#7 cells even though IL-5 and GM-CSF receptors mediate signal transduction via a common beta-chain component that is also necessary for high-affinity binding. Overall, this unique system may permit the dissection of distinct events responsible for specific intracellular signals transduced separately by GM-CSF or IL-5.


Blood ◽  
1999 ◽  
Vol 94 (6) ◽  
pp. 1943-1951 ◽  
Author(s):  
Q. Sun ◽  
K. Jones ◽  
B. McClure ◽  
B. Cambareri ◽  
B. Zacharakis ◽  
...  

Abstract Human interleukin-5 (IL-5), granulocyte-macrophage colony-stimulating factor (GM-CSF), and IL-3 are eosinophilopoietic cytokines implicated in allergy in general and in the inflammation of the airways specifically as seen in asthma. All 3 cytokines function through cell surface receptors that comprise a ligand-specific  chain and a shared subunit (βc). Although binding of IL-5, GM-CSF, and IL-3 to their respective receptor  chains is the first step in receptor activation, it is the recruitment of βc that allows high-affinity binding and signal transduction to proceed. Thus, βc is a valid yet untested target for antiasthma drugs with the added advantage of potentially allowing antagonism of all 3 eosinophil-acting cytokines with a single compound. We show here the first development of such an agent in the form of a monoclonal antibody (MoAb), BION-1, raised against the isolated membrane proximal domain of βc. BION-1 blocked eosinophil production, survival, and activation stimulated by IL-5 as well as by GM-CSF and IL-3. Studies of the mechanism of this antagonism showed that BION-1 prevented the high-affinity binding of125I–IL-5, 125I–GM-CSF, and125I–IL-3 to purified human eosinophils and that it bound to the major cytokine binding site of βc. Interestingly, epitope analysis using several βc mutants showed that BION-1 interacted with residues different from those used by IL-5, GM-CSF, and IL-3. Furthermore, coimmunoprecipitation experiments showed that BION-1 prevented ligand-induced receptor dimerization and phosphorylation of βc, suggesting that ligand contact with βc is a prerequisite for recruitment of βc, receptor dimerization, and consequent activation. These results demonstrate the feasibility of simultaneously inhibiting IL-5, GM-CSF, and IL-3 function with a single agent and that BION-1 represents a new tool and lead compound with which to identify and generate further agents for the treatment of eosinophil-dependent diseases such as asthma.


Blood ◽  
1998 ◽  
Vol 92 (3) ◽  
pp. 778-783 ◽  
Author(s):  
Birgit Dibbert ◽  
Isabelle Daigle ◽  
Doris Braun ◽  
Corinna Schranz ◽  
Martina Weber ◽  
...  

Eosinophils are potent inflammatory cells involved in allergic reactions. Inhibition of apoptosis of purified eosinophils by certain cytokines has been previously shown to be an important mechanism causing tissue eosinophilia. To elucidate the role of Bcl-2 family members in the inhibition of eosinophil apoptosis, we examined the expression of the known anti-apoptotic genes Bcl-2, Bcl-xL, and A1, as well as Bax and Bcl-xS, which promote apoptosis in other systems. We show herein that freshly isolated human eosinophils express significant amounts of Bcl-xL and Bax, but only little or no Bcl-2, Bcl-xS, or A1. As assessed by reverse transcription-polymerase chain reaction, immunoblotting, flow cytometry, and immunocytochemistry, we show that spontaneous eosinophil apoptosis is associated with a decrease in Bcl-xL mRNA and protein levels. In contrast, stimulation of the cells with granulocyte-macrophage colony-stimulating factor (GM-CSF) or interleukin-5 (IL-5) results in maintenance or upregulation of Bcl-xL mRNA and protein levels. Moreover, Bcl-2 protein is not induced by GM-CSF or IL-5 in purified eosinophils. Bcl-2 protein is also not expressed in tissue eosinophils as assessed by immunohistochemistry using two different eosinophilic tissue models. Furthermore, Bcl-xL antisense but not scrambled phosphorothioate oligodeoxynucleotides can partially block the cytokine-mediated rescue of apoptotic death in these cells. These data suggest that Bcl-xL acts as an anti-apoptotic molecule in eosinophils. © 1998 by The American Society of Hematology.


Blood ◽  
1999 ◽  
Vol 94 (6) ◽  
pp. 1943-1951 ◽  
Author(s):  
Q. Sun ◽  
K. Jones ◽  
B. McClure ◽  
B. Cambareri ◽  
B. Zacharakis ◽  
...  

Human interleukin-5 (IL-5), granulocyte-macrophage colony-stimulating factor (GM-CSF), and IL-3 are eosinophilopoietic cytokines implicated in allergy in general and in the inflammation of the airways specifically as seen in asthma. All 3 cytokines function through cell surface receptors that comprise a ligand-specific  chain and a shared subunit (βc). Although binding of IL-5, GM-CSF, and IL-3 to their respective receptor  chains is the first step in receptor activation, it is the recruitment of βc that allows high-affinity binding and signal transduction to proceed. Thus, βc is a valid yet untested target for antiasthma drugs with the added advantage of potentially allowing antagonism of all 3 eosinophil-acting cytokines with a single compound. We show here the first development of such an agent in the form of a monoclonal antibody (MoAb), BION-1, raised against the isolated membrane proximal domain of βc. BION-1 blocked eosinophil production, survival, and activation stimulated by IL-5 as well as by GM-CSF and IL-3. Studies of the mechanism of this antagonism showed that BION-1 prevented the high-affinity binding of125I–IL-5, 125I–GM-CSF, and125I–IL-3 to purified human eosinophils and that it bound to the major cytokine binding site of βc. Interestingly, epitope analysis using several βc mutants showed that BION-1 interacted with residues different from those used by IL-5, GM-CSF, and IL-3. Furthermore, coimmunoprecipitation experiments showed that BION-1 prevented ligand-induced receptor dimerization and phosphorylation of βc, suggesting that ligand contact with βc is a prerequisite for recruitment of βc, receptor dimerization, and consequent activation. These results demonstrate the feasibility of simultaneously inhibiting IL-5, GM-CSF, and IL-3 function with a single agent and that BION-1 represents a new tool and lead compound with which to identify and generate further agents for the treatment of eosinophil-dependent diseases such as asthma.


1998 ◽  
Vol 188 (1) ◽  
pp. 133-143 ◽  
Author(s):  
Chiara Zilocchi ◽  
Antonella Stoppacciaro ◽  
Claudia Chiodoni ◽  
Mariella Parenza ◽  
Nadia Terrazzini ◽  
...  

We analyzed the ability of interferon (IFN)-γ knockout mice (GKO) to reject a colon carcinoma transduced with interleukin (IL)-12 genes (C26/IL-12). Although the absence of IFN-γ impaired the early response and reduced the time to tumor onset in GKO mice, the overall tumor take rate was similar to that of BALB/c mice. In GKO mice, C26/IL-12 tumors had a reduced number of infiltrating leukocytes, especially CD8 and natural killer cells. Analysis of the tumor site, draining nodes, and spleens of GKO mice revealed reduced expression of IFN- inducible protein 10 and monokine induced by γ-IFN. Despite these defects, GKO mice that rejected C26/IL-12 tumor, and mice that were primed in vivo with irradiated C26/IL-12 cells, showed the same cytotoxic T lymphocyte activity but higher production of granulocyte/macrophage colony–stimulating factor (GM-CSF) as compared with control BALB/c mice. Treatment with monoclonal antibodies against GM-CSF abrogated tumor regression in GKO but not in BALB/c mice. CD4 T lymphocytes, which proved unnecessary or suppressive during rejection of C26/IL-12 cells in BALB/c mice, were required for tumor rejection in GKO mice. CD4 T cell depletion was coupled with a decline in GM-CSF expression by lymphocytes infiltrating the tumors or in the draining nodes, and with the reduction and disappearance of granulocytes and CD8 T cells, respectively, in tumor nodules. These results suggest that GM-CSF can substitute for IFN-γ in maintaining the CD8–polymorphonuclear leukocyte cross-talk that is a hallmark of tumor rejection.


Blood ◽  
2003 ◽  
Vol 101 (1) ◽  
pp. 143-150 ◽  
Author(s):  
Yves Delneste ◽  
Peggy Charbonnier ◽  
Nathalie Herbault ◽  
Giovanni Magistrelli ◽  
Gersende Caron ◽  
...  

Abstract Human monocytes differentiate into dendritic cells (DCs) or macrophages according to the nature of environmental signals. Monocytes stimulated with granulocyte-macrophage colony-stimulating factor (GM-CSF) plus interleukin 4 (IL-4) yield DCs. We tested here whether interferon-γ (IFN-γ), a potent activator of macrophages, may modulate monocyte differentiation. Addition of IFN-γ to IL-4 plus GM-CSF–stimulated monocytes switches their differentiation from DCs to CD14−CD64+ macrophages. IFN-γ increases macrophage colony-stimulating factor (M-CSF) and IL-6 production by IL-4 plus GM-CSF–stimulated monocytes by acting at the transcriptional level and acts together with IL-4 to up-regulate M-CSF but not IL-6 production. IFN-γ also increases M-CSF receptor internalization. Results from neutralizing experiments show that both M-CSF and IL-6 are involved in the ability of IFN-γ to skew monocyte differentiation from DCs to macrophages. Finally, this effect of IFN-γ is limited to early stages of differentiation. When added to immature DCs, IFN-γ up-regulates IL-6 but not M-CSF production and does not convert them to macrophages, even in the presence of exogenous M-CSF. In conclusion, IFN-γ shifts monocyte differentiation to macrophages rather than DCs through autocrine M-CSF and IL-6 production. These data show that IFN-γ controls the differentiation of antigen-presenting cells and thereby reveals a new mechanism by which IFN-γ orchestrates the outcome of specific immune responses.


Blood ◽  
2000 ◽  
Vol 96 (4) ◽  
pp. 1230-1238 ◽  
Author(s):  
Tan Jinquan ◽  
Sha Quan ◽  
Henrik H. Jacobi ◽  
Chen Jing ◽  
Anders Millner ◽  
...  

Abstract CXC chemokine receptor 3 (CXCR3), which is known to be expressed predominately on memory and activated T lymphocytes, is a receptor for both interferon γ (IFN-γ)–inducible protein 10 (γIP-10) and monokine induced by IFN-γ (Mig). We report the novel finding that CXCR3 is also expressed on CD34+ hematopoietic progenitors from human cord blood stimulated with granulocyte-macrophage colony-stimulating factor (GM-CSF) but not on freshly isolated CD34+ progenitors. Freshly isolated CD34+progenitors expressed low levels of CXCR3 messenger RNA, but this expression was highly up-regulated by GM-CSF, as indicated by a real-time quantitative reverse transcriptase–polymerase chain reaction technique. γIP-10 and Mig induced chemotaxis of GM-CSF–stimulated CD34+ progenitors by means of CXCR3, since an anti-CXCR3 monoclonal antibody (mAb) was found to block γIP-10–induced and Mig-induced CD34+ progenitor chemotaxis. These chemotactic attracted CD34+ progenitors are colony-forming units—granulocyte-macrophage. γIP-10 and Mig also induced GM-CSF–stimulated CD34+ progenitor adhesion and aggregation by means of CXCR3, a finding confirmed by the observation that anti-CXCR3 mAb blocked these functions of γIP-10 and Mig but not of chemokine stromal cell–derived factor 1α. γIP-10–induced and Mig-induced up-regulation of integrins (CD49a and CD49b) was found to play a crucial role in adhesion of GM-CSF–stimulated CD34+progenitors. Moreover, γIP-10 and Mig stimulated CXCR3 redistribution and cellular polarization in GM-CSF–stimulated CD34+progenitors. These results indicate that CXCR3–γIP-10 and CXCR3–Mig receptor-ligand pairs, as well as the effects of GM-CSF on them, may be especially important in the cytokine/chemokine environment for the physiologic and pathophysiologic events of differentiation of CD34+ hematopoietic progenitors into lymphoid and myeloid stem cells, subsequently immune and inflammatory cells. These processes include transmigration, relocation, differentiation, and maturation of CD34+ hematopoietic progenitors.


2020 ◽  
Vol 7 (4) ◽  
pp. e729 ◽  
Author(s):  
Farinaz Safavi ◽  
Rodolfo Thome ◽  
Zichen Li ◽  
Guang-Xian Zhang ◽  
Abdolmohamad Rostami

ObjectiveTo study the immunomodulatory effect of dimethyl fumarate (DF) on granulocyte macrophage colony-stimulating factor (GM-CSF) production in CD4+ T cells in experimental autoimmune encephalomyelitis (EAE) and human peripheral blood mononuclear cells (PBMCs).MethodsWe collected splenocytes and CD4+ T cells from C57BL/6 wild-type and interferon (IFN)-γ–deficient mice. For human PBMCs, venous blood was collected from healthy donors, and PBMCs were collected using the Percoll gradient method. Cells were cultured with anti-CD3/28 in the presence/absence of DF for 3 to 5 days. Cells were stained and analyzed by flow cytometry. Cytokines were measured by ELISA in cell supernatants. For in vivo experiments, EAE was induced by myelin oligodendrocyte glycoprotein35–55 and mice were treated with oral DF or vehicle daily.ResultsDF acts directly on CD4+ T cells and suppresses GM-CSF–producing Th1 not Th17 or single GM-CSF+ T cells in EAE. In addition, GM-CSF suppression depends on the IFN-γ pathway. We also show that DF specifically suppresses Th1 and GM-CSF–producing Th1 cells in PBMCs from healthy donors.ConclusionsWe suggest that DF exclusively suppresses GM-CSF–producing Th1 cells in both animal and human CD4+ T cells through an IFN-γ–dependent pathway. These findings indicate that DF has a better therapeutic effect on patients with Th1-dominant immunophenotype. However, future longitudinal study to validate this finding in MS is needed.


Sign in / Sign up

Export Citation Format

Share Document