scholarly journals Analysis of Mechanisms Associated with Loss of Infectivity of Clonal Populations of Borrelia burgdorferi B31MI

2001 ◽  
Vol 69 (6) ◽  
pp. 3670-3677 ◽  
Author(s):  
John V. McDowell ◽  
Shian Ying Sung ◽  
Maria Labandeira-Rey ◽  
Jon T. Skare ◽  
Richard T. Marconi

ABSTRACT Numerous studies have provided suggestive evidence that the loss of plasmids correlates with the loss of infectivity of the Lyme disease spirochetes. In this study we have further investigated this correlation. Clonal populations were obtained from the skin of a mouse infected for 3 months with a clonal population of Borrelia burgdorferi B31MI. The complete plasmid compositions of these populations were determined using a combination of PCR and Southern hybridization. The infectivities of clones differing in plasmid composition were tested using the C3H-HeJ murine model for Lyme disease. While several clones were found to be noninfectious, a correlation between the loss of a specific plasmid and loss of infectivity in the clones analyzed in this report was not observed. While it is clear from recent studies that the loss of some specific plasmids results in attenuated virulence, this study demonstrates that additional mechanisms also contribute to the loss of infectivity.

2001 ◽  
Vol 45 (3) ◽  
pp. 936-937 ◽  
Author(s):  
Charles S. Pavia ◽  
Gary P. Wormser ◽  
John Nowakowski ◽  
Anthony Cacciapuoti

ABSTRACT The MICs of evernimicin at which 90% of Borrelia burgdorferi patient isolates were inhibited ranged from 0.1 to 0.5 μg/ml. Evernimicin was as effective as ceftriaxone againstB. burgdorferi in a murine model of experimental Lyme disease. As assessed by culturing the urinary bladders of infected C3H mice, no live Borrelia isolates were recoverable following antibiotic treatment.


2003 ◽  
Vol 71 (7) ◽  
pp. 3699-3706 ◽  
Author(s):  
Radha Iyer ◽  
Ogori Kalu ◽  
Joye Purser ◽  
Steven Norris ◽  
Brian Stevenson ◽  
...  

ABSTRACT The genome of Borrelia burgdorferi, the etiologic agent of Lyme disease, is composed of a linear chromosome and more than 20 linear and circular plasmids. Typically, plasmid content analysis has been carried out by pulsed-field gel electrophoresis and confirmed by Southern hybridization. However, multiple plasmids of virtually identical sizes (e.g., lp28 and cp32) complicate the interpretation of such data. The present study was undertaken to investigate the complete plasmid complements of B. burgdorferi clinical isolates cultivated from patients from a single region where early Lyme disease is endemic. A total of 21 isolates obtained from the skin biopsy or blood samples of Lyme disease patients were examined for their complete plasmid complements by Southern hybridization and plasmid-specific PCR analysis. All clinical isolates harbored at least six of the nine previously characterized cp32s. Fourteen isolates harbored all B31-like linear plasmids, and seven isolates simultaneously lacked lp56, lp38, and some segments of lp28-1. The distinctive plasmid profile observed in these seven isolates was specific to organisms that had ribosomal spacer type 2 and pulsed-field gel type A, which implies a clonal origin for this genotype. The presence of nearly identical complements of multiple linear and circular plasmids in all of the human isolates suggests that these plasmids may be particularly necessary for infection, adaptation, and/or maintenance in the infected host.


2021 ◽  
Author(s):  
Matthew K. Muramatsu ◽  
Jianli Zhou ◽  
Bryna L. Fitzgerald ◽  
Ranjit K. Deka ◽  
John T. Belisle ◽  
...  

Riboflavin is an essential micronutrient, but its transport and utilization has remained largely understudied among pathogenic spirochetes. Here we show that Borrelia burgdorferi , the zoonotic spirochete that causes Lyme disease, is able to import riboflavin via products of its rfuABCD -like operon as well as synthesize flavin mononucleotide and flavin adenine dinucleotide despite lacking canonical genes for their synthesis. Additionally, a mutant deficient in the rfuABCD -like operon is resistant to the antimicrobial effect of roseoflavin, a natural riboflavin analog, and is attenuated in a murine model of Lyme borreliosis. Our combined results indicate that not only are riboflavin and the maintenance of flavin pools essential for B. burgdorferi growth, but that flavin utilization and its downstream products (e.g., flavoproteins) may play a more prominent role in B. burgdorferi pathogenesis than previously appreciated.


2000 ◽  
Vol 68 (8) ◽  
pp. 4759-4764 ◽  
Author(s):  
Kayla E. Hagman ◽  
Xiaofeng Yang ◽  
Stephen K. Wikel ◽  
George B. Schoeler ◽  
Melissa J. Caimano ◽  
...  

ABSTRACT Previous studies showed that decorin-binding protein A (DbpA) ofBorrelia burgdorferi was a protective immunogen in the murine model of Lyme borreliosis when mice were challenged (needle inoculated) intradermally with in vitro-cultivated spirochetes. In the present study, DbpA-immunized C3H/HeJ mice were not protected from infection when infested with Ixodes scapularis nymphs harboring virulent B. burgdorferi 297. This lack of protection correlated with the failure to detect DbpA on B. burgdorferi in ticks, suggesting that DbpA is not available as a target for bactericidal antibodies in serum when B. burgdorferi-infected ticks take their blood meal from an immunized host. The failure of DbpA immunization to protect tick-challenged mice contradicts the results of earlier needle inoculation vaccination experiments and suggests that DbpA may not be suitable as a Lyme disease vaccine.


2013 ◽  
Vol 58 (1) ◽  
pp. 348-351 ◽  
Author(s):  
Joseph Piesman ◽  
Andrias Hojgaard ◽  
Amy J. Ullmann ◽  
Marc C. Dolan

ABSTRACTAs an alternative to oral prophylaxis for the prevention of tick transmission ofBorrelia burgdorferi, we tested antibiotic cream prophylactic formulations in a murine model of spirochete infection. A 4% preparation of doxycycline cream afforded no protection, but a single application of 4% azithromycin cream was 100% protective when applied directly to the tick bite site at the time of tick removal. Indeed, the azithromycin cream was 100% effective when applied at up to 3 days after tick removal and protected 74% of mice exposed to tick bite when applied at up to 2 weeks after tick removal. Azithromycin cream was also protective when applied at a site distal to the tick bite site, suggesting that it was having a systemic effect in addition to a local transdermal effect. Mice that were protected from tick-transmitted infection did not seroconvert and did not infect larval ticks on xenodiagnosis. Azithromycin cream formulations appear to hold promise for Lyme disease prophylaxis.


2008 ◽  
Vol 76 (11) ◽  
pp. 5274-5284 ◽  
Author(s):  
Mahulena Maruskova ◽  
J. Seshu

ABSTRACT Borrelia burgdorferi, the causative agent of Lyme disease, alters its gene expression in response to highly disparate environmental signals encountered in its tick vector versus vertebrate hosts. Whole-genome transcriptional profile analysis of B. burgdorferi, propagated in vitro under mammalian-host-specific conditions, revealed significant upregulation of several linear plasmid 54 (lp54)-encoded open reading frames (ORFs). Among these ORFs, BBA64, BBA65, and BBA66 have been shown to be upregulated in response to multiple mammalian-host-specific signals. Recently, we determined that there was no significant difference in the ability of BBA64− mutant to infect C3H/HeN mice compared to its isogenic control strains, suggesting that B. burgdorferi might utilize multiple, functionally related determinants to establish infection. We further generated BBA65− and BBA66− single mutants in a noninfectious, lp25− clonal isolate of B. burgdorferi strain B31 (ML23) and complemented them with the minimal region of lp25 (BBE22) required for restoring the infectivity. In addition, we generated a BBA64− BBA65− BBA66− triple mutant using an infectious, clonal isolate of B. burgdorferi strain B31 (5A11) that has all of the infection-associated plasmids. There were no significant differences in the ability to isolate viable spirochetes from different tissues of C3H/HeN mice infected via intradermal needle inoculation with either the individual single mutants or the triple mutant compared to their respective isogenic parental strains at days 21 and 62 postinfection. These observations suggest that B. burgdorferi can establish infection in the absence of expression of BBA64, BBA65, and BBA66 in the murine model of Lyme disease.


Author(s):  
S. F. Hayes ◽  
M. D. Corwin ◽  
T. G. Schwan ◽  
D. W. Dorward ◽  
W. Burgdorfer

Characterization of Borrelia burgdorferi strains by means of negative staining EM has become an integral part of many studies related to the biology of the Lyme disease organism. However, relying solely upon negative staining to compare new isolates with prototype B31 or other borreliae is often unsatisfactory. To obtain more satisfactory results, we have relied upon a correlative approach encompassing a variety EM techniques, i.e., scanning for topographical features and cryotomy, negative staining and thin sectioning to provide a more complete structural characterization of B. burgdorferi.For characterization, isolates of B. burgdorferi were cultured in BSK II media from which they were removed by low speed centrifugation. The sedimented borrelia were carefully resuspended in stabilizing buffer so as to preserve their features for scanning and negative staining. Alternatively, others were prepared for conventional thin sectioning and for cryotomy using modified procedures. For thin sectioning, the fixative described by Ito, et al.


Author(s):  
Matthew T Milholland ◽  
Lars Eisen ◽  
Robyn M Nadolny ◽  
Andrias Hojgaard ◽  
Erika T Machtinger ◽  
...  

Abstract Lyme and other tick-borne diseases are increasing in the eastern United States and there is a lack of research on integrated strategies to control tick vectors. Here we present results of a study on tick-borne pathogens detected from tick vectors and rodent reservoirs from an ongoing 5-yr tick suppression study in the Lyme disease-endemic state of Maryland, where human-biting tick species, including Ixodes scapularis Say (Acari: Ixodidae) (the primary vector of Lyme disease spirochetes), are abundant. During the 2017 tick season, we collected 207 questing ticks and 602 ticks recovered from 327 mice (Peromyscus spp. (Rodentia: Cricetidae)), together with blood and ear tissue from the mice, at seven suburban parks in Howard County. Ticks were selectively tested for the presence of the causative agents of Lyme disease (Borrelia burgdorferi sensu lato [s.l.]), anaplasmosis (Anaplasma phagocytophilum), babesiosis (Babesia microti), ehrlichiosis (Ehrlichia ewingii, Ehrlichia chaffeensis, and ‘Panola Mountain’ Ehrlichia) and spotted fever group rickettsiosis (Rickettsia spp.). Peromyscus ear tissue and blood samples were tested for Bo. burgdorferi sensu stricto (s.s), A. phagocytophilum, Ba. microti, and Borrelia miyamotoi. We found 13.6% (15/110) of questing I. scapularis nymphs to be Bo. burgdorferi s.l. positive and 1.8% (2/110) were A. phagocytophilum positive among all sites. Borrelia burgdorferi s.s. was found in 71.1% (54/76) of I. scapularis nymphs removed from mice and 58.8% (194/330) of captured mice. Results from study on tick abundance and pathogen infection status in questing ticks, rodent reservoirs, and ticks feeding on Peromyscus spp. will aid efficacy evaluation of the integrated tick management measures being implemented.


Sign in / Sign up

Export Citation Format

Share Document