generation vaccine
Recently Published Documents


TOTAL DOCUMENTS

89
(FIVE YEARS 46)

H-INDEX

18
(FIVE YEARS 4)

Author(s):  
Juan Manuel Battagliotti ◽  
Diego Fontana ◽  
Marina Etcheverrigaray ◽  
Ricardo Kratje ◽  
Claudio Prieto

2021 ◽  
Vol 12 ◽  
Author(s):  
Dandan Tian ◽  
Yanhong Sun ◽  
Jianming Zhou ◽  
Qing Ye

During the COVID-19 pandemic, SARS-CoV-2 variants have emerged and spread worldwide. The Delta (B.1.617.2) variant was first reported in India in October 2020 and was classified as a “variant of concern (VOC)” by the WHO on 11 May, 2021. Compared to the wild-type strain, several studies have shown that the Delta variant is more transmissible and has higher viral loads in infected samples. COVID-19 patients infected with the Delta variant have a higher risk of hospitalization, intensive care unit (ICU) admission, and mortality. The Delta variant is becoming the dominant strain in many countries around the world. This review summarizes and analyses the biological characteristics of key amino acid mutations, the epidemic characteristics, and the immune escape of the Delta variant. We hope to provide scientific reference for the monitoring and prevention measures of the SARS-CoV-2 Delta variant and the development strategy of a second-generation vaccine.


2021 ◽  
Author(s):  
Saghar Kaabinejadian ◽  
Carolina Barra ◽  
Bruno Alvarez ◽  
Hooman Yari ◽  
William Hildebrand ◽  
...  

Mass spectrometry (MS) based immunopeptidomics is used in several biomedical applications including neo-epitope discovery in oncology and next-generation vaccine development. Immunopeptidome data are highly complex given the expression of multiple HLA alleles on the cell membrane and presence of co-immunoprecipitated contaminants. The absence of tools that accurately deal with these challenges is currently a major bottleneck for the large-scale application of this technique. Here, we present the MHCMotifDecon that benefits from state-of-the-art HLA class-I and class-II predictions to accurately deconvolute immunopeptidome datasets and assign individual ligands to the most likely HLA allele while discarding co-purified contaminants. We have benchmarked the tool against other state-of-the-art methods and illustrated its application on experimental datasets for HLA-DR demonstrating a previously underappreciated role for HLA-DRB3/4/5 molecules in defining HLA class II immune repertoires. With its ease of use MHCMotifDecon can efficiently guide interpretation of immunopeptidome datasets, serving the discovery of novel T cell targets.


2021 ◽  
Author(s):  
Sapna Sharma ◽  
Thomas Vercruysse ◽  
Lorena Sanchez-Felipe ◽  
Winnie Kerstens ◽  
Rana Abdelnabi ◽  
...  

Current licensed COVID-19 vaccines are based on antigen sequences of initial SARS-CoV-2 isolates that emerged in 2019. By mid 2021 these historical virus strains have been completely replaced by new cosmopolitan SARS-CoV-2 lineages. The ongoing pandemic has been further driven by emerging variants of concern (VOC) Alpha, Beta, Gamma and, lately predominant, Delta. These are characterized by an increased transmissibility and possible escape from naturally acquired or vaccine-induced immunity. We here show, using a YF17D-vectored first-generation COVID-19 vaccine (Sanchez-Felipe et al., 2021) and a stringent hamster challenge model (Abdelnabi et al., 2021) that the immunity elicited by a prototypic spike antigen is insufficient to provide optimal protection against the Beta VoC, urging for an antigenic update. We therefore designed an updated second-generation vaccine candidate that carries the sequence of a spike antigen that includes crucial epitopes from multiple VOCs. This vaccine candidate yielded a marked change in target antigen spectrum covered as demonstrated by (i) antigenic cartography and (ii) full protection against infection and virus-induced disease caused by any of the four VOCs (Alpha, Beta, Gamma and Delta) used for challenge. This more universal COVID-19 vaccine candidate also efficiently blocked direct transmission of VOC Delta from vaccinated infected hamsters to non-vaccinated sentinels under prolonged co-housing conditions. In conclusion, our data suggest that current first-generation COVID-19 vaccines need to be adapted to cover emerging sequence diversity of VOC to preserve vaccine efficacy and to contain virus spread at the community level.


2021 ◽  
Vol 63 (1) ◽  
Author(s):  
Ad Vos ◽  
Tiina Nokireki ◽  
Marja Isomursu ◽  
Tuija Gadd ◽  
Ferenc Kovacs

Abstract Background To prevent re-emergence of wildlife-mediated rabies in Finland, oral rabies vaccine baits are distributed every year during autumn in southern Finland in a vaccination zone bordering Russia. Recently, Finland introduced a 3rd generation oral rabies virus vaccine bait. By analysing bait uptake and seroconversion in red foxes and raccoon dogs, the field efficacy of this new vaccine strain, SPBN GASGAS, was compared with the originally used highly efficacious 1st generation vaccine SAD B19. Results Overall, 74.6% and 53.9% of the animals submitted from the vaccination area after the campaigns (2017–2019) tested positive for the presence of the bait marker and anti-rabiesvirus antibodies, respectively. No significant difference was observed between years, species and vaccine. Conclusions The field performance of the highly attenuated 3rd generation oral rabies vaccine, SPBN GASGAS, in terms of bait uptake and seroconversion was similar to the 1st generation vaccine, SAD B19, and therefore offers a suitable alternative.


2021 ◽  
Author(s):  
David P Maison ◽  
Lauren L Ching ◽  
Sean B Cleveland ◽  
Alanna C Tseng ◽  
Eileen Nakano ◽  
...  

SARS-CoV-2 worldwide emergence and evolution has resulted in variants containing mutations resulting in immune evasive epitopes that decrease vaccine efficacy. We acquired clinical samples, analyzed SARS-CoV-2 genomes, used the most worldwide emerged spike mutations from Variants of Concern/Interest, and developed an algorithm for monitoring the SARS-CoV-2 vaccine platform. The algorithm partitions logarithmic-transformed prevalence data monthly and Pearson's correlation determines exponential emergence. The SARS-CoV-2 genome evaluation indicated 49 mutations. Nine of the ten most worldwide prevalent (>70%) spike protein changes have r-values >0.9. The tenth, D614G, has a prevalence >99% and r-value of 0.67. The resulting algorithm is based on the patterns these ten substitutions elucidated. The strong positive correlation of the emerged spike protein changes and algorithmic predictive value can be harnessed in designing vaccines with relevant immunogenic epitopes. SARS-CoV-2 is predicted to remain endemic and continues to evolve, so must SARS-CoV-2 monitoring and next-generation vaccine design.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Dheeraj Chandra ◽  
B. Vipin ◽  
Dinesh Kumar

PurposeDue to the introduction of new vaccines in the child immunization program and inefficient vaccine supply chain (VSC), the universal immunization program (UIP), India is struggling to provide a full schedule of vaccination to the targeted children. In this paper, the authors investigate the critical factors for improving the performance of the existing VSC system by implementing the next-generation vaccine supply chain (NGVSC) in India.Design/methodology/approachThe authors design a fuzzy multi-criteria framework using a fuzzy analytical hierarchical process (FAHP) and fuzzy multi-objective optimization on the basis of ratio analysis (FMOORA) to identify and analyze the critical barriers and enablers for the implementation of NGVSC. Further, the authors carry out a numerical simulation to validate the model.FindingsThe outcome of the analysis contends that demand forecasting is the topmost supply chain barrier and sustainable financing is the most important/critical enabler to facilitate the implementation of the NGVSC. In addition, the simulation reveals that the results of the study are reliable.Social implicationsThe findings of the study can be useful for the child immunization policymakers of India and other developing countries to design appropriate strategies for improving existing VSC performance by implementing the NGVSC.Originality/valueTo the best of the authors’ knowledge, the study is the first empirical study to propose the improvement of VSC performance by designing the NGVSC.


2021 ◽  
Author(s):  
Peng Li ◽  
Xiuran Wang ◽  
Xiangwan Sun ◽  
Jesse Cimino ◽  
Ziqiang Guan ◽  
...  

To develop an effective Pseudomonas aeruginosa (PA) outer-membrane-vesicles (OMVs) vaccine, we eliminated multiple virulence factors from a wild-type P. aeruginosa PA103 strain (PA103) to generate a recombinant strain, PA-m14. The PA-m14 strain was tailored with a pSMV83 plasmid encoding the pcrV-hitA T fusion gene to produce OMVs. The recombinant OMVs enclosed increased amounts of PcrV-HitA T bivalent antigen (PH) (termed OMV-PH) and exhibited reduced toxicity compared to the OMVs from PA103. Intramuscular vaccination with OMV-PH from PA-m14(pSMV83) afforded 70% protection against intranasal challenge with 6.5 × 10 6 CFU (∼30 LD 50 ) of PA103, while immunization using OMVs without the PH antigen (termed OMV-NA) or the PH antigen alone failed to offer effective protection against the same challenge. Further immune analysis showed that the OMV-PH immunization significantly stimulated potent antigen-specific humoral and T-cell (Th1/Th17) responses in comparison to the PH or OMV-NA immunization in mice, which can effectively hinder PA infection. Undiluted anti-sera from OMV-PH-immunized mice displayed significant opsonophagocytic killing of WT PA103 compared to antisera from PH antigen- or OMV-NA-immunized mice. Moreover, the OMV-PH immunization afforded significant antibody-indentpednet cross-protection to mice against PAO1 and a clinical isolate AMC-PA10 strains. Collectively, the recombinant PA OMV delivering the PH bivalent antigen exhibits high immunogenicity and would be a promising next-generation vaccine candidate against PA infection.


2021 ◽  
Author(s):  
Sam Afkhami ◽  
Michael R. D'Agostino ◽  
Ali Zhang ◽  
Hannah D. Stacey ◽  
Art Marzok ◽  
...  

The emerging SARS-CoV-2 variants of concern (VOC) increasingly threaten the effectiveness of current first-generation COVID-19 vaccines that are administered intramuscularly and are designed to only target the spike protein. There is thus a pressing need to develop next-generation vaccine strategies to provide more broad and long-lasting protection. By using adenoviral vectors (Ad) of human and chimpanzee origin, we developed Ad-vectored trivalent COVID-19 vaccines expressing Spike-1, Nucleocapsid and RdRp antigens and evaluated them following single-dose intramuscular or intranasal immunization in murine models. We show that respiratory mucosal immunization, particularly with chimpanzee Ad-vectored vaccine, is superior to intramuscular immunization in induction of the three-arm immunity, consisting of local and systemic antibody responses, mucosal tissue-resident memory T cells, and mucosal trained innate immunity. We further show that single-dose intranasal immunization provides robust protection against not only the ancestral strain of SARS-CoV-2, but also two emerging VOC, B.1.1.7 and B.1.351. Our findings indicate that single-dose respiratory mucosal delivery of an Ad-vectored multivalent vaccine represents an effective next-generation COVID-19 vaccine strategy against current and future VOC. This strategy has great potential to be used not only to boost first-generation vaccine-induced immunity but also to expand the breadth of protective T cell immunity at the respiratory mucosa.


Cell Research ◽  
2021 ◽  
Author(s):  
Shiyu Sun ◽  
Yueqi Cai ◽  
Tian-Zhang Song ◽  
Yang Pu ◽  
Lin Cheng ◽  
...  

AbstractSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a global crisis, urgently necessitating the development of safe, efficacious, convenient-to-store, and low-cost vaccine options. A major challenge is that the receptor-binding domain (RBD)-only vaccine fails to trigger long-lasting protective immunity if used alone for vaccination. To enhance antigen processing and cross-presentation in draining lymph nodes (DLNs), we developed an interferon (IFN)-armed RBD dimerized by an immunoglobulin fragment (I-R-F). I-R-F efficiently directs immunity against RBD to DLNs. A low dose of I-R-F induces not only high titers of long-lasting neutralizing antibodies (NAbs) but also more comprehensive T cell responses than RBD. Notably, I-R-F provides comprehensive protection in the form of a one-dose vaccine without an adjuvant. Our study shows that the pan-epitope modified human I-R-F (I-P-R-F) vaccine provides rapid and complete protection throughout the upper and lower respiratory tracts against a high-dose SARS-CoV-2 challenge in rhesus macaques. Based on these promising results, we have initiated a randomized, placebo-controlled, phase I/II trial of the human I-P-R-F vaccine (V-01) in 180 healthy adults, and the vaccine appears safe and elicits strong antiviral immune responses. Due to its potency and safety, this engineered vaccine may become a next-generation vaccine candidate in the global effort to overcome COVID-19.


Sign in / Sign up

Export Citation Format

Share Document