scholarly journals Functional Substitution of the TibC Protein of Enterotoxigenic Escherichia coli Strains for the Autotransporter Adhesin Heptosyltransferase of the AIDA System

2002 ◽  
Vol 70 (5) ◽  
pp. 2264-2270 ◽  
Author(s):  
Corinna Moormann ◽  
Inga Benz ◽  
M. Alexander Schmidt

ABSTRACT The plasmid-encoded AIDA (adhesin involved in diffuse adherence) autotransporter protein derived from diffuse-adhering clinical Escherichia coli isolate 2787 and the TibA (enterotoxigenic invasion locus B) protein encoded by the chromosomal tib locus of enterotoxigenic E. coli (ETEC) strain H10407 are posttranslationally modified by carbohydrate substituents. Analysis of the AIDA-I adhesin showed that the modification involved heptose residues. AIDA-I is modified by the heptosyltransferase activity of the product of the aah gene, which is located directly upstream of adhesin-encoding gene aidA. The carbohydrate modification of the TibA adhesin/invasin is mediated by the TibC protein but has not been elucidated. Based on the sequence similarities between TibC and AAH (autotransporter adhesin heptosyltransferase) and between the TibA and the AIDA proteins we hypothesized that the AIDA system and the Tib system encoded by the tib locus are structurally and functionally related. Here we show that (i) TibC proteins derived from different ETEC strains appear to be highly conserved, (ii) recombinant TibC proteins can substitute for the AAH heptosyltransferase in introducing the heptosyl modification to AIDA-I, (iii) this modification is functional in restoring the adhesive function of AIDA-I, (iv) a single amino acid substitution at position 358 completely abolishes this activity, and (v) antibodies directed at the functionally active AIDA-I recognize a protein resembling modified TibA in ETEC strains. In summary, we conclude that, like AAH, TibC represents an example of a novel class of heptosyltransferases specifically transferring heptose residues onto multiple sites of a protein backbone. A potential consensus sequence for the modification site is suggested.

2000 ◽  
Vol 182 (9) ◽  
pp. 2567-2573 ◽  
Author(s):  
Nobuo Kido ◽  
Hidemitsu Kobayashi

ABSTRACT wbdA is a mannosyltransferase gene that is involved in synthesis of the Escherichia coli O9a polysaccharide, a mannose homopolymer with a repeating unit of 2-αMan-1,2-αMan-1,3-αMan-1,3-αMan-1. The equivalent structural O polysaccharide in the E. coli O9 andKlebsiella O3 strains is 2-αMan-1,2-αMan-1,2-αMan-1,3-αMan-1,3-αMan-1, with an excess of one mannose in the 1,2 linkage. We have cloned wbdAgenes from these O9 and O3 strains and shown by genetic and functional studies that wbdA is the only gene determining the O-polysaccharide structure of O9 or O9a. Based on functional analysis of chimeric genes and site-directed mutagenesis, we showed that a single amino acid substitution, C55R, in WbdA of E. coli O9 converts the O9 polysaccharide into O9a. DNA sequencing revealed the substitution to be conserved in other E. coli O9a strains. The reverse substitution, R55C, in WbdA of E. coli O9a resulted in lipopolysaccharide synthesis showing no ladder profile instead of the conversion of O9a to O9. This suggests that more than one amino acid substitution in WbdA is required for conversion from O9a to O9.


Microbiology ◽  
2015 ◽  
Vol 161 (4) ◽  
pp. 895-902 ◽  
Author(s):  
Mouparna Dutta ◽  
Debasish Kar ◽  
Ankita Bansal ◽  
Sandeep Chakraborty ◽  
Anindya S. Ghosh

1994 ◽  
Vol 7 (12) ◽  
pp. 1495-1500 ◽  
Author(s):  
Jacques Izard ◽  
Michael W. Parker ◽  
Martlne Chartier ◽  
Denis Ducheé ◽  
Daniel Baty

2012 ◽  
Vol 56 (4) ◽  
pp. 2184-2186 ◽  
Author(s):  
Patrice Nordmann ◽  
Anne E. Boulanger ◽  
Laurent Poirel

ABSTRACTA clinicalEscherichia coliisolate resistant to all β-lactams, including carbapenems, expressed a novel metallo-β-lactamase (MBL), NDM-4, differing from NDM-1 by a single amino acid substitution (Met154Leu). NDM-4 possessed increased hydrolytic activity toward carbapenems and several cephalosporins compared to that of NDM-1. This amino acid substitution was not located in the known active sites of NDM-1, indicating that remote amino acid substitutions might also play a role in the extended activity of this MBL.


Sign in / Sign up

Export Citation Format

Share Document