scholarly journals Correct Promoter Control Is Needed for Trafficking of the Ring-Infected Erythrocyte Surface Antigen to the Host Cytosol in Transfected Malaria Parasites

2004 ◽  
Vol 72 (10) ◽  
pp. 6095-6105 ◽  
Author(s):  
Melanie Rug ◽  
Mark E. Wickham ◽  
Michael Foley ◽  
Alan F. Cowman ◽  
Leann Tilley

ABSTRACT Following invasion of human erythrocytes, the malaria parasite, Plasmodium falciparum, exports proteins beyond the confines of its own plasma membrane to modify the properties of the host red cell membrane. These modifications are critical to the pathogenesis of malaria. Analysis of the P. falciparum genome sequence has identified a large number of molecules with putative atypical signal sequences. The signals remain poorly characterized; however, a number of molecules with these motifs localize to the host erythrocyte. To examine the role of these atypical signal sequences in the export of parasite proteins, we have generated transfected parasites expressing a chimeric protein comprising the N-terminal region of the P. falciparum ring-infected erythrocyte surface antigen (RESA) appended to green fluorescent protein (GFP). This N-terminal region contains a hydrophobic stretch of amino acids that is presumed to act as a noncanonical secretory signal sequence. Modulation of the timing of transgene expression demonstrates that trafficking of malaria proteins into the host erythrocyte is dependant on both the presence of an appropriate transport signal and the timing of expression. Transgene expression under the control of a trophozoite-specific promoter mistargets the chimeric molecule to the parasitophorous vacuole surrounding the parasite. However, expression of RESA-GFP in schizont stages, under the control of the RESA promoter, enables correct trafficking of a population of the chimeric protein to the host erythrocyte.

1989 ◽  
Vol 9 (8) ◽  
pp. 3584-3587
Author(s):  
R Cappai ◽  
M R van Schravendijk ◽  
R F Anders ◽  
M G Peterson ◽  
L M Thomas ◽  
...  

We show here that the Plasmodium falciparum isolate FCR3 does not express the ring-infected erythrocyte surface antigen (RESA). This is because the 5' end of the RESA gene has been inverted and partly deleted and a telomere has been added to it. We propose a model to explain these events.


Blood ◽  
2007 ◽  
Vol 110 (3) ◽  
pp. 1036-1042 ◽  
Author(s):  
Xinhong Pei ◽  
Xinhua Guo ◽  
Ross Coppel ◽  
Souvik Bhattacharjee ◽  
Kasturi Haldar ◽  
...  

AbstractThe malaria parasite Plasmodium falciparum releases the ring-infected erythrocyte surface antigen (RESA) inside the red cell on entry. The protein migrates to the host cell membrane, where it binds to spectrin, but neither the nature of the interaction nor its functional consequences have previously been defined. Here, we identify the binding motifs involved in the interaction and describe a possible function. We have found that spectrin binds to a 108–amino acid fragment (residues 663-770) of RESA, and that this RESA fragment binds to repeat 16 of the β-chain, close to the labile dimer-dimer self-association site. We further show that the RESA fragment stabilizes the spectrin tetramer against dissociation into its constituent dimers, both in situ and in solution. This is accompanied by enhanced resistance of the cell to both mechanical and thermal degradation. Resealed erythrocytes containing RESA663-770 display resistance to invasion by merozoites of P falciparum. We infer that the evolutionary advantage of RESA to the parasite lies in its ability to prevent invasion of cells that are already host to a developing parasite, as well as possibly to guard the cell against thermal damage at the elevated body temperatures prevailing in febrile crises.


2004 ◽  
Vol 3 (3) ◽  
pp. 663-674 ◽  
Author(s):  
Omar S. Harb ◽  
Bithi Chatterjee ◽  
Martin J. Fraunholz ◽  
Michael J. Crawford ◽  
Manami Nishi ◽  
...  

ABSTRACT Most species of the protozoan phylum Apicomplexa harbor an endosymbiotic organelle—the apicoplast—acquired when an ancestral parasite engulfed a eukaryotic plastid-containing alga. Several hundred proteins are encoded in the parasite nucleus and are posttranslationally targeted to the apicoplast by a distinctive bipartite signal. The N-terminal 20 to 30 amino acids of nucleus-encoded apicoplast targeted proteins function as a classical signal sequence, mediating entry into the secretory pathway. Cleavage of the signal sequence exposes a transit peptide of variable length (50 to 200 amino acids) that is required for directing proteins to the apicoplast. Although these peptides are enriched in basic amino acids, their structural and functional characteristics are not well understood, which hampers the identification of apicoplast proteins that may constitute novel chemotherapeutic targets. To identify functional domains for a model apicoplast transit peptide, we generated more than 80 deletions and mutations throughout the transit peptide of Toxoplasma gondii ferredoxin NADP+ reductase (TgFNR) and examined the ability of these altered transit peptides to mediate proper targeting and processing of a fluorescent protein reporter. These studies revealed the presence of numerous functional domains. Processing can take place at multiple sites in the protein sequence and may occur outside of the apicoplast lumen. The TgFNR transit peptide contains at least two independent and functionally redundant targeting signals, each of which contains a subdomain that is required for release from or proper sorting within the endoplasmic reticulum. Certain deletion constructs traffic to multiple locations, including the apicoplast periphery, the rhoptries, and the parasitophorous vacuole, suggesting a common thread for targeting to these specialized compartments.


1988 ◽  
Vol 38 (2) ◽  
pp. 268-282 ◽  
Author(s):  
William E. Collins ◽  
Graham F. Mitchell ◽  
Marguerite Pappaioanou ◽  
Graham V. Brown ◽  
Gary H. Campbell ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document