scholarly journals A 38-Kilobase Pathogenicity Island Specific for Mycobacterium avium subsp. paratuberculosis Encodes Cell Surface Proteins Expressed in the Host

2004 ◽  
Vol 72 (3) ◽  
pp. 1265-1274 ◽  
Author(s):  
Janin Stratmann ◽  
Birgit Strommenger ◽  
Ralph Goethe ◽  
Karen Dohmann ◽  
Gerald-F. Gerlach ◽  
...  

ABSTRACT We have used representational difference analysis to identify a novel Mycobacterium avium subsp. paratuberculosis-specific ABC transporter operon (mpt), which comprises six open reading frames designated mptA to -F and is immediately preceded by two putative Fur boxes. Functional genomics revealed that the mpt operon is flanked on one end by a fep cluster encoding proteins involved in the uptake of Fe3+ and on the other end by a sid cluster encoding non-ribosome-dependent heterocyclic siderophore synthases. Together these genes form a 38-kb M. avium subsp. paratuberculosis-specific locus flanked by an insertion sequence similar to IS1110. Expression studies using Western blot analyses showed that MptC is present in the envelope fraction of M. avium subsp. paratuberculosis. The MptD protein was shown to be surface exposed, using a specific phage (fMptD) isolated from a phage-peptide library, by differential screening of Mycobacterium smegmatis transformants. The phage fMptD-derived peptide could be used in a peptide-mediated capture PCR with milk from infected dairy herds, thereby showing surface-exposed expression of the MptD protein in the host. Together, these data suggest that the 38-kb locus constitutes an M. avium subsp. paratuberculosis pathogenicity island.

2007 ◽  
Vol 76 (2) ◽  
pp. 739-749 ◽  
Author(s):  
John P. Bannantine ◽  
Michael L. Paustian ◽  
W. Ray Waters ◽  
Judith R. Stabel ◽  
Mitchell V. Palmer ◽  
...  

ABSTRACT With the genome sequence of Mycobacterium avium subsp. paratuberculosis determined, technologies are now being developed for construction of protein arrays to detect the presence of antibodies against M. avium subsp. paratuberculosis in host serum. The power of this approach is that it enables a direct comparison of M. avium subsp. paratuberculosis proteins to each other in relation to their immunostimulatory capabilities. In this study, 93 recombinant proteins, produced in Escherichia coli, were arrayed and spotted onto nitrocellulose. These proteins include unknown hypothetical proteins and cell surface proteins as well as proteins encoded by large sequence polymorphisms present uniquely in M. avium subsp. paratuberculosis. Also included were previously reported or known M. avium subsp. paratuberculosis antigens to serve as a frame of reference. Sera from healthy control cattle (n = 3) and cattle infected with either M. avium subsp. avium and Mycobacterium bovis were exposed to the array to identify nonspecific or cross-reactive epitopes. These data demonstrated a degree of cross-reactivity with the M. avium subsp. avium proteins that was higher than the degree of cross-reactivity with the more distantly related M. bovis proteins. Finally, sera from naturally infected cattle (n = 3) as well as cattle experimentally infected with M. avium subsp. paratuberculosis (n = 3) were used to probe the array to identify antigens in the context of Johne's disease. Three membrane proteins were the most strongly detected in all serum samples, and they included an invasion protein, an ABC peptide transport permease, and a putative GTPase protein. This powerful combination of genomic information, molecular tools, and immunological assays has enabled the identification of previously unknown antigens of M. avium subsp. paratuberculosis.


2005 ◽  
Vol 187 (7) ◽  
pp. 2406-2415 ◽  
Author(s):  
Michael L. Paustian ◽  
Vivek Kapur ◽  
John P. Bannantine

ABSTRACT Mycobacterium avium subsp. paratuberculosis is genetically similar to other members of the Mycobacterium avium complex (MAC), some of which are nonpathogenic and widespread in the environment. We have utilized an M. avium subsp. paratuberculosis whole-genome microarray representing over 95% of the predicted coding sequences to examine the genetic conservation among 10 M. avium subsp. paratuberculosis isolates, two isolates each of Mycobacterium avium subsp. silvaticum and Mycobacterium avium subsp. avium, and a single isolate each of both Mycobacterium intracellulare and Mycobacterium smegmatis. Genomic DNA from each isolate was competitively hybridized with DNA from M. avium subsp. paratuberculosis K10, and open reading frames (ORFs) were classified as present, divergent, or intermediate. None of the M. avium subsp. paratuberculosis isolates had ORFs classified as divergent. The two M. avium subsp. avium isolates had 210 and 135 divergent ORFs, while the two M. avium subsp. silvaticum isolates examined had 77 and 103 divergent ORFs. Similarly, 130 divergent ORFs were identified in M. intracellulare. A set of 97 ORFs were classified as divergent or intermediate in all of the nonparatuberculosis MAC isolates tested. Many of these ORFs are clustered together on the genome in regions with relatively low average GC content compared with the entire genome and contain mobile genetic elements. One of these regions of sequence divergence contained genes homologous to a mammalian cell entry (mce) operon. Our results indicate that closely related MAC mycobacteria can be distinguished from M. avium subsp. paratuberculosis by multiple clusters of divergent ORFs.


2006 ◽  
Vol 188 (6) ◽  
pp. 2290-2293 ◽  
Author(s):  
Ian B. Marsh ◽  
John P. Bannantine ◽  
Michael L. Paustian ◽  
Mark L. Tizard ◽  
Vivek Kapur ◽  
...  

ABSTRACT Microarray-based comparisons of three Mycobacterium avium subsp. paratuberculosis isolates, including one sheep strain and two cattle strains, identified three large genomic deletions in the sheep strain, totaling 29,208 bp and involving 24 open reading frames. These deletions may help explain some of the differences in pathogenicity and host specificity observed between the cattle and sheep strains of Mycobacterium avium subsp. paratuberculosis.


Animals ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 20
Author(s):  
Luigi De Grossi ◽  
Davide Santori ◽  
Antonino Barone ◽  
Silvia Abbruzzese ◽  
Matteo Ricchi ◽  
...  

Paratuberculosis is a chronic disease of ruminants caused by Mycobacterium avium subsp. Paratuberculosis (MAP). Since isolation of MAP type I (S) is rarely reported in Italy, our research was aimed at isolating, by an inexpensive liquid culture manual method, this type of MAP isolates. At first, we used an ELISA to point out to serologically positive samples from five flocks. Secondly, we used a fecal direct IS900-qPCR on the ELISA positive samples, in order to detect shedder animals. Feces from IS900-qPCR positive samples were inoculated in solid and liquid culture media. IS900-qPCR was further used to test the growth of MAP isolates in liquid medium, which were further confirmed by f57-qPCR and submitted to typing by specific PCR in order to identify the MAP type. Twenty-eight samples (24 fecal and four tissutal samples) were processed by culture methods, resulting in the isolation of six type I MAP field isolates. Notably, no isolates were recovered by solid media, underlining the utility of this liquid method. Few data about this type of MAP are currently available in Italy, and further analyses should be carried out in order to study the origin and epidemiology of type I strains circulating in Italy.


Sign in / Sign up

Export Citation Format

Share Document