scholarly journals CCL20/Macrophage Inflammatory Protein 3α and Tumor Necrosis Factor Alpha Production by Primary Uterine Epithelial Cells in Response to Treatment with Lipopolysaccharide or Pam3Cys

2005 ◽  
Vol 73 (1) ◽  
pp. 476-484 ◽  
Author(s):  
Mardi A. Crane-Godreau ◽  
Charles R. Wira

ABSTRACT Having previously shown that CCL20/macrophage inflammatory protein 3α and tumor necrosis factor alpha (TNF-α) are released by polarized primary rat uterine epithelial cells (UEC) in response to Escherichia coli but not to Lactobacillus rhamnosus, we sought to determine if epithelial cells are responsive to pathogen-associated molecular patterns (PAMP), including lipopolysaccharide (LPS), lipoteichoic acid (LTA), and Pam3Cys, a bacterial lipoprotein analog. Epithelial cells were grown to confluence on Nunc cell culture inserts prior to apical treatment with PAMPs. In response to LPS, LTA, and Pam3Cys (EMC Microcollection GmbH, Tübingen, Germany), CCL20 levels increased (4- to 10-fold) while PAMPs caused increased TNF-α (1- to 4-fold) in the medium collected after 24 h of incubation. Both apical and basolateral secretion of CCL20 and TNF-α increased in response to PAMPs, but treatments had no effect on cell viability and integrity, as measured by transepithelial resistance. Time course studies of CCL20 and TNF-α release in response to Pam3Cys and LPS indicated that CCL20 release peaked between 2 and 4 h after treatment, whereas TNF-α release was gradual over the length of the incubation. Freeze-thaw and cell lysis experiments, along with actinomycin D studies, suggested that CCL20 and TNF-α are synthesized in response to PAMP stimulation. Taken together, these studies demonstrate that E. coli and selected PAMPs have direct effects on the production of CCL20 and TNF-α without affecting cell integrity. Since CCL20 is known to be both chemotactic and antimicrobial, the increase in apical and basolateral release by UEC in response to PAMPs suggests a new mechanism of innate immune protection in the female reproductive tract.

2005 ◽  
Vol 73 (7) ◽  
pp. 4231-4237 ◽  
Author(s):  
Mardi A. Crane-Godreau ◽  
Charles R. Wira

ABSTRACT We have previously demonstrated that rat uterine epithelial cells (UEC) produce CCL20/macrophage inflammatory protein 3 alpha (MIP3α) and tumor necrosis factor alpha (TNF-α) in response to live and heat-killed Escherichia coli and to the pathogen-associated molecular patterns (PAMP) lipopolysaccharide (LPS) and Pam3Cys. To determine whether estradiol (E2) modulates PAMP-induced CCL20/MIP3α and TNF-α secretion, primary cultures of rat UEC were incubated with E2 for 24 h and then treated with LPS or Pam3Cys or not treated for an additional 12 h. E2 inhibited the constitutive secretion of TNF-α and CCL20/MIP3α into culture media. Interestingly, E2 pretreatment enhanced CCL20/MIP3α secretion due to LPS and Pam3Cys administration. In contrast, and at the same time, E2 lowered the TNF-α response to both PAMP. To determine whether estrogen receptors (ER) mediated the effects of E2, epithelial cells were incubated with E2 and/or ICI 182,780, a known ER antagonist. ICI 182,780 had no effect on E2 inhibition of constitutive TNF-α and CCL20/MIP3α secretion. In contrast, ICI 182,780 reversed the stimulatory effect of E2 on LPS- and/or Pam3Cys-induced CCL20/MIP3α secretion as well as partially reversed the inhibitory effect of E2 on TNF-α production by epithelial cells. Overall, these results indicate that E2 regulates the production of TNF-α and CCL20/MIP3α by UEC in the absence as well as presence of PAMP. Since CCL20/MIP3α has antimicrobial activity and is chemotactic for immune cells, these studies suggest that regulation of CCL20/MIP3α and TNF-α by E2 and PAMP may have profound effects on innate and adaptive immune responses to microbial challenge in the female reproductive tract.


2004 ◽  
Vol 72 (9) ◽  
pp. 5308-5314 ◽  
Author(s):  
Donglai Ma ◽  
Paul Forsythe ◽  
John Bienenstock

ABSTRACT The mechanism of the apparent anti-inflammatory action of probiotic organisms is unclear. Lactobacillus reuteri is effective in inhibiting colitis in interleukin-10 (IL-10)-deficient mice. Nerve growth factor (NGF), in addition to its activity on neuronal cell growth, has significant anti-inflammatory effects in several experimental systems in vitro and in vivo, including a model of colitis. Our experiments were designed to explore the mechanism of effect of L. reuteri in the human epithelial cell lines T84 and HT29 on cytokine and NGF synthesis and IL-8 response to tumor necrosis factor alpha (TNF-α). Epithelial cells were cultured for various times with live and killed L. reuteri and examined by reverse transcription-PCR for NGF, IL-10, and TNF-α-induced IL-8 expression. An enzyme-linked immunosorbent assay was used to quantitate intracellular IL-8 and secreted product. Western blotting and confocal microscopy were used to determine the effects on IκB and NF-κB, respectively. Live but not heat-killed or gamma-irradiated L. reuteri upregulated NGF and dose dependently inhibited constitutive synthesis by T84 and HT29 cells of IL-8 and that induced by TNF-α in terms of mRNA and intracellular and secreted protein. Similarly, L. reuteri inhibited IL-8 synthesis induced by Salmonella enterica serovar Typhimurium. L. reuteri required preincubation and adherence for effect, inhibited translocation of NF-κB to the nuclei of HeLa cells, and prevented degradation of IκB. Neither cellular lysates nor media supernatants had any effect on TNF-α-induced IL-8. The conclusion is that L. reuteri has potent direct anti-inflammatory activity on human epithelial cells, which is likely to be related to the activity of ingested probiotics. L. reuteri also upregulates an unusual anti-inflammatory molecule, NGF, and inhibits NF-κB translocation to the nucleus.


2001 ◽  
Vol 45 (12) ◽  
pp. 3381-3386 ◽  
Author(s):  
Zdenĕk Zı́dek ◽  
Daniela Franková ◽  
Antonı́n Holý

ABSTRACT Development of a novel group of antiviral agents, acyclic nucleoside phosphonates, has provided a new perspective for treating human immunodeficiency virus (HIV) infection. One of the compounds, 9-(R)-[2-(phosphonomethoxy)propyl]adenine (PMPA) (tenofovir), has been shown to confer complete protection against AIDS in a simian model of the infection. The aim of our study was to investigate whether the antiviral efficacy of PMPA, which depends mainly on inhibition of virus-induced DNA polymerase or of reverse transcriptase, could be contributed by immunomodulatory potential of this drug. We screened for its ability to activate production of cytokines and chemokines that are known to interfere with the replication and/or the entry of HIV in cells. Using the in vitro test system of mouse macrophages and lymphocytes, it has been found that PMPA stimulates macrophage secretion of interleukin-1β (IL-1β), IL-10, and tumor necrosis factor alpha. Production of the chemokines RANTES and macrophage inflammatory protein 1α was activated in both macrophages and lymphocytes, and also in human cell line U937. Other cytokines—i.e., IL-2, IL-12, IL-13, and gamma interferon—remained uninfluenced by PMPA. The cytokines were stimulated in a dose-dependent fashion, with rapid onset, and peak concentrations were achieved within 5 to 24 h. The findings contribute to a more complex understanding of mechanisms of antiviral effectiveness of PMPA and support the view that this drug could become a promising candidate for therapeutic exploitation in anti-HIV preventive medicine.


2020 ◽  
Author(s):  
Wenna Gao ◽  
Ruilin Zhu ◽  
liu yang

Background: Mounting evidence has suggested tumor necrosis factor-alpha (TNF-α) can promote the development of diabetic retinopathy (DR), and TNF-α gene variants may influence DR risk. However, the results are quite different. Objectives: To comprehensively address this issue, we performed the meta-analysis to evaluate the association of TNF-α-308 G/A and -238 G/A polymorphism with DR. Method: Data were retrieved in a systematic manner and analyzed using STATA Statistical Software. Crude odds ratios (ORs) with 95% confidence intervals (CIs) were used to assess the strength of associations. Allelic and genotypic comparisons between cases and controls were evaluated. Results: For the TNF-α-308 G/A polymorphism, overall analysis suggested a marginal association with DR [the OR(95%CI) of (GA versus GG), (GA + AA) versus GG, and (A versus G) are 1.21(1.04, 1.41), 1.20(1.03, 1.39), and 1.14(1.01, 1.30), respectively]. And the subgroup analysis indicated an enhanced association among the European population. For the TNF-α-238 G/A polymorphism, there was mild correlation in the entire group [the OR(95%CI) of (GA versus GG) is 1.55(1.14,2.11) ], which was strengthened among the Asian population. Conclusion: The meta-analysis suggested that -308 A and -238 A allele in TNF-α gene potentially increased DR risk and showed a discrepancy in different ethnicities.


2016 ◽  
Vol 36 (9) ◽  
pp. 1342-1353 ◽  
Author(s):  
Gil Diamant ◽  
Tal Eisenbaum ◽  
Dena Leshkowitz ◽  
Rivka Dikstein

The proinflammatory cytokine tumor necrosis factor alpha (TNF-α) modulates the expression of many genes, primarily through activation of NF-κB. Here, we examined the global effects of the elongation factor Spt5 on nascent and mature mRNAs of TNF-α-induced cells using chromatin and cytosolic subcellular fractions. We identified several classes of TNF-α-induced genes controlled at the level of transcription, splicing, and chromatin retention. Spt5 was found to facilitate splicing and chromatin release in genes displaying high induction rates. Further analysis revealed striking effects of TNF-α on the splicing of 25% of expressed genes; the vast majority were not transcriptionally induced. Splicing enhancement of noninduced genes by TNF-α was transient and independent of NF-κB. Investigating the underlying basis, we found that Spt5 is required for the splicing facilitation of the noninduced genes. In line with this, Spt5 interacts with Sm core protein splicing factors. Furthermore, following TNF-α treatment, levels of RNA polymerase II (Pol II) but not Spt5 are reduced from the splicing-induced genes, suggesting that these genes become enriched with a Pol II-Spt5 form. Our findings revealed the Pol II-Spt5 complex as a highly competent coordinator of cotranscriptional splicing.


2006 ◽  
Vol 26 (24) ◽  
pp. 9244-9255 ◽  
Author(s):  
Xiaolan Feng ◽  
Shirin Bonni ◽  
Karl Riabowol

ABSTRACT ING proteins affect apoptosis, growth, and DNA repair by transducing stress signals such as DNA damage, binding histones, and subsequently regulating chromatin structure and p53 activity. p53 target genes, including the p21 cyclin-dependent kinase inhibitor and Bax, an inducer of apoptosis, are regulated by ING proteins. To identify additional targets downstream of p33ING1 and p32ING2, cDNA microarrays were performed on phenotypically normal human primary fibroblasts. The 0.36% of genes affected by ING proteins in primary fibroblasts were distinct from targets seen in established cells and included the HSP70 heat shock gene, whose promoter was specifically induced >10-fold. ING1-induced expression of HSP70 shifted cells from survival to a death pathway in response to tumor necrosis factor alpha (TNF-α), and p33ING1b protein showed synergy with TNF-α in inducing apoptosis, which correlated with reduced NF-κB-dependent transcription. These findings are consistent with previous reports that HSP70 promotes TNF-α-mediated apoptosis by binding I-κΒ kinase gamma and impairing NF-κB survival signaling. Induction of HSP70 required the amino terminus of ING1b but not the plant homeodomain region that was recently identified as a histone binding domain. Regulation of HSP70 gene expression by the ING tumor suppressors provides a novel link between the INGs and the stress-regulated NF-κB survival pathway important in hypoxia and angiogenesis.


2001 ◽  
Vol 69 (11) ◽  
pp. 7169-7172 ◽  
Author(s):  
Martin M. Dinges ◽  
Patrick M. Schlievert

ABSTRACT Host susceptibility to lipopolysaccharide (LPS) is correlated with the levels of circulating tumor necrosis factor alpha (TNF-α) that develop in response to circulating LPS. Mice are resistant, relative to rabbits, to the lethal effects of LPS. This study indicates that mice and rabbits are equally sensitive to the lethal effects of circulating TNF-α but that mice are more resistant than rabbits to the induction of circulating TNF-α by LPS.


2001 ◽  
Vol 69 (8) ◽  
pp. 4823-4830 ◽  
Author(s):  
Véronique Jubier-Maurin ◽  
Rose-Anne Boigegrain ◽  
Axel Cloeckaert ◽  
Antoine Gross ◽  
Maria-Teresa Alvarez-Martinez ◽  
...  

ABSTRACT Brucella spp. can establish themselves and cause disease in humans and animals. The mechanisms by whichBrucella spp. evade the antibacterial defenses of their host, however, remain largely unknown. We have previously reported that live brucellae failed to induce tumor necrosis factor alpha (TNF-α) production upon human macrophage infection. This inhibition is associated with a nonidentified protein that is released into culture medium. Outer membrane proteins (OMPs) of gram-negative bacteria have been shown to modulate macrophage functions, including cytokine production. Thus, we have analyzed the effects of two major OMPs (Omp25 and Omp31) of Brucella suis 1330 (wild-type [WT] B. suis) on TNF-α production. For this purpose, omp25and omp31 null mutants of B. suis(Δomp25 B. suis and Δomp31 B. suis, respectively) were constructed and analyzed for the ability to activate human macrophages to secrete TNF-α. We showed that, in contrast to WTB. suis or Δomp31 B. suis, Δomp25 B. suis induced TNF-α production when phagocytosed by human macrophages. The complementation of Δomp25 B. suis with WT omp25 (Δomp25-omp25 B. suis mutant) significantly reversed this effect: Δomp25-omp25 B. suis-infected macrophages secreted significantly less TNF-α than did macrophages infected with the Δomp25 B. suismutant. Furthermore, pretreatment of WT B. suis with an anti-Omp25 monoclonal antibody directed against an epitope exposed at the surface of the bacteria resulted in substancial TNF-α production during macrophage infection. These observations demonstrated that Omp25 of B. suis is involved in the negative regulation of TNF-α production upon infection of human macrophages.


Sign in / Sign up

Export Citation Format

Share Document