scholarly journals Francisella tularensis Enters Macrophages via a Novel Process Involving Pseudopod Loops

2005 ◽  
Vol 73 (9) ◽  
pp. 5892-5902 ◽  
Author(s):  
Daniel L. Clemens ◽  
Bai-Yu Lee ◽  
Marcus A. Horwitz

ABSTRACT Intracellular bacterial pathogens employ a variety of strategies to invade their eukaryotic host cells. From an ultrastructural standpoint, the processes that bacteria employ to invade their host cells include conventional phagocytosis, coiling phagocytosis, and ruffling/triggered macropinocytosis. In this paper, we describe a novel process by which Francisella tularensis, the agent of tularemia, enters host macrophages. F. tularensis is a remarkably infectious facultative intracellular bacterial parasite—as few as 10 bacteria can cause life-threatening disease in humans. However, the ultrastructure of its uptake and the receptor mechanisms that mediate its uptake have not been reported previously. We have used fluorescence microscopy and electron microscopy to examine the adherence and uptake of a virulent recent clinical isolate of F. tularensis, subspecies tularensis, and the live vaccine strain (LVS), subspecies holarctica, by human macrophages. We show here that both strains of F. tularensis enter human macrophages by a novel process of engulfment within asymmetric, spacious pseudopod loops, a process that differs ultrastructurally from all previously described uptake mechanisms. We demonstrate also that adherence and uptake of F. tularensis by macrophages is strongly dependent upon complement receptors and upon serum with intact complement factor C3 and that uptake requires actin microfilaments. These findings have significant implications for understanding the intracellular biology and virulence of this extremely infectious pathogen.

2003 ◽  
Vol 197 (9) ◽  
pp. 1183-1190 ◽  
Author(s):  
Teresita Díaz de Ståhl ◽  
Jörgen Dahlström ◽  
Michael C. Carroll ◽  
Birgitta Heyman

IgG1, IgG2a, and IgG2b, passively administered with soluble Ags, enhance specific Ab responses. The effect of IgG3 in this type of feedback regulation has not been studied previously. We immunized mice with trinitrophenyl (TNP)-coupled carrier proteins (bovine serum albumin [BSA] or ovalbumin [OVA]) alone or complexed to monoclonal TNP-specific IgG3. The carrier-specific Ab responses were enhanced by several hundred-fold by IgG3. Enhancement was significantly impaired in mice depleted of complement factor C3 and in mice lacking complement receptors 1 and 2 (Cr2−/−). In contrast, mice lacking the common Fc-receptor gamma chain (FcRγ−/−), resulting in reduced expression of FcγRI and lack of FcγRIII, and mice lacking FcγRIIB (FcγRIIB−/−), responded equally well to immunization with IgG3-complexed Ag as wild-type controls. These findings demonstrate that IgG3 can induce feedback enhancement and that IgG3, in analogy with IgM, uses the complement system for this function.


2021 ◽  
Vol 12 ◽  
Author(s):  
Martin Kohn ◽  
Christian Lanfermann ◽  
Robert Laudeley ◽  
Silke Glage ◽  
Claudia Rheinheimer ◽  
...  

The zoonotic intracellular bacterium Chlamydia psittaci causes life-threatening pneumonia in humans. During mouse lung infection, complement factor C3 and the anaphylatoxin C3a augment protection against C. psittaci by a so far unknown mechanism. To clarify how complement contributes to the early, innate and the late, specific immune response and resulting protection, this study addresses the amount of C3, the timing when its presence is required as well as the anaphylatoxin receptor(s) mediating its effects and the complement-dependent migration of dendritic cells. Challenge experiments with C. psittaci on various complement KO mice were combined with transient decomplementation by pharmacological treatment, as well as the analysis of in vivo dendritic cells migration. Our findings reveal that a plasma concentration of C3 close to wildtype levels was required to achieve full protection. The diminished levels of C3 of heterozygote C3+/− mice permitted already relative effective protection and improved survival as compared to C3−/− mice, but overall recovery of these animals was delayed. Complement was in particular required during the first days of infection. However, additionally, it seems to support protection at later stages. Migration of CD103+ dendritic cells from the infected lung to the draining lymph node—as prerequisite of antigen presentation—depended on C3 and C3aR and/or C5aR. Our results provide unique mechanistic insight in various aspects of complement-dependent immune responses under almost identical, rather physiological experimental conditions. Our study contributes to an improved understanding of the role of complement, and C3a in particular, in infections by intracellular bacteria.


2010 ◽  
Vol 78 (4) ◽  
pp. 1797-1806 ◽  
Author(s):  
Courtney E. Noah ◽  
Meenakshi Malik ◽  
DeAnna C. Bublitz ◽  
Devin Camenares ◽  
Timothy J. Sellati ◽  
...  

ABSTRACT Francisella tularensis, the causative agent of tularemia, interacts with host cells of innate immunity in an atypical manner. For most Gram-negative bacteria, the release of lipopolysaccharide (LPS) from their outer membranes stimulates an inflammatory response. When LPS from the attenuated live vaccine strain (LVS) or the highly virulent Schu S4 strain of F. tularensis was incubated with human umbilical vein endothelial cells, neither species of LPS induced expression of the adhesion molecule E-selectin or secretion of the chemokine CCL2. Moreover, a high concentration (10 μg/ml) of LVS or Schu S4 LPS was required to stimulate production of CCL2 by human monocyte-derived macrophages (huMDM). A screen for alternative proinflammatory factors of F. tularensis LVS identified the heat shock protein GroEL as a potential candidate. Recombinant LVS GroEL at a concentration of 10 μg/ml elicited secretion of CXCL8 and CCL2 by huMDM through a TLR4-dependent mechanism. When 1 μg of LVS GroEL/ml was added to an equivalent amount of LVS LPS, the two components synergistically activated the huMDM to produce CXCL8. Schu S4 GroEL was less stimulatory than LVS GroEL and showed a lesser degree of synergy when combined with Schu S4 LPS. These findings suggest that the intrinsically low proinflammatory activity of F. tularensis LPS may be increased in the infected human host through interactions with other components of the bacterium.


2009 ◽  
Vol 78 (3) ◽  
pp. 1022-1031 ◽  
Author(s):  
Gabrielle J. Platz ◽  
DeAnna C. Bublitz ◽  
Patricio Mena ◽  
Jorge L. Benach ◽  
Martha B. Furie ◽  
...  

ABSTRACT The highly infectious bacterium Francisella tularensis is a facultative intracellular pathogen and the causative agent of tularemia. TolC, which is an outer membrane protein involved in drug efflux and type I protein secretion, is required for the virulence of the F. tularensis live vaccine strain (LVS) in mice. Here, we show that an LVS ΔtolC mutant colonizes livers, spleens, and lungs of mice infected intradermally or intranasally, but it is present at lower numbers in these organs than in those infected with the parental LVS. For both routes of infection, colonization by the ΔtolC mutant is most severely affected in the lungs, suggesting that TolC function is particularly important in this organ. The ΔtolC mutant is hypercytotoxic to murine and human macrophages compared to the wild-type LVS, and it elicits the increased secretion of proinflammatory chemokines from human macrophages and endothelial cells. Taken together, these data suggest that TolC function is required for F. tularensis to inhibit host cell death and dampen host immune responses. We propose that, in the absence of TolC, F. tularensis induces excessive host cell death, causing the bacterium to lose its intracellular replicative niche. This results in lower bacterial numbers, which then are cleared by the increased innate immune response of the host.


2008 ◽  
Vol 45 (11) ◽  
pp. 3125-3132 ◽  
Author(s):  
Amelia Clark ◽  
Alexander Weymann ◽  
Eric Hartman ◽  
Yumirle Turmelle ◽  
Michael Carroll ◽  
...  

2016 ◽  
Vol 60 (4) ◽  
pp. 2052-2062 ◽  
Author(s):  
Ky V. Hoang ◽  
Heather Curry ◽  
Michael A. Collier ◽  
Hassan Borteh ◽  
Eric M. Bachelder ◽  
...  

ABSTRACTFrancisella tularensiscauses tularemia and is a potential biothreat. Given the limited antibiotics for treating tularemia and the possible use of antibiotic-resistant strains as a biowarfare agent, new antibacterial agents are needed. AR-12 is an FDA-approved investigational new drug (IND) compound that induces autophagy and has shown host-directed, broad-spectrum activityin vitroagainstSalmonella entericaserovar Typhimurium andF. tularensis. We have shown that AR-12 encapsulated within acetalated dextran (Ace-DEX) microparticles (AR-12/MPs) significantly reduces host cell cytotoxicity compared to that with free AR-12, while retaining the ability to controlS.Typhimurium within infected human macrophages. In the present study, the toxicity and efficacy of AR-12/MPs in controlling virulent type AF. tularensisSchuS4 infection were examinedin vitroandin vivo. No significant toxicity of blank MPs or AR-12/MPs was observed in lung histology sections when the formulations were given intranasally to uninfected mice. In histology sections from the lungs of intranasally infected mice treated with the formulations, increased macrophage infiltration was observed for AR-12/MPs, with or without suboptimal gentamicin treatment, but not for blank MPs, soluble AR-12, or suboptimal gentamicin alone. AR-12/MPs dramatically reduced the burden ofF. tularensisin infected human macrophages, in a manner similar to that of free AR-12. However,in vivo, AR-12/MPs significantly enhanced the survival ofF. tularensisSchuS4-infected mice compared to that seen with free AR-12. In combination with suboptimal gentamicin treatment, AR-12/MPs further improved the survival ofF. tularensisSchuS4-infected mice. These studies provide support for Ace-DEX-encapsulated AR-12 as a promising new therapeutic agent for tularemia.


2014 ◽  
Vol 82 (5) ◽  
pp. 2068-2078 ◽  
Author(s):  
Christopher R. Doyle ◽  
Ji-An Pan ◽  
Patricio Mena ◽  
Wei-Xing Zong ◽  
David G. Thanassi

ABSTRACTFrancisella tularensisis a facultative intracellular, Gram-negative pathogen and the causative agent of tularemia. We previously identified TolC as a virulence factor of theF. tularensislive vaccine strain (LVS) and demonstrated that a ΔtolCmutant exhibits increased cytotoxicity toward host cells and elicits increased proinflammatory responses compared to those of the wild-type (WT) strain. TolC is the outer membrane channel component used by the type I secretion pathway to export toxins and other bacterial virulence factors. Here, we show that the LVS delays activation of the intrinsic apoptotic pathway in a TolC-dependent manner, both during infection of primary macrophages and during organ colonization in mice. The TolC-dependent delay in host cell death is required forF. tularensisto preserve its intracellular replicative niche. We demonstrate that TolC-mediated inhibition of apoptosis is an active process and not due to defects in the structural integrity of the ΔtolCmutant. These findings support a model wherein the immunomodulatory capacity ofF. tularensisrelies, at least in part, on TolC-secreted effectors. Finally, mice vaccinated with the ΔtolCLVS are protected from lethal challenge and clear challenge doses faster than WT-vaccinated mice, demonstrating that the altered host responses to primary infection with the ΔtolCmutant led to altered adaptive immune responses. Taken together, our data demonstrate that TolC is required for temporal modulation of host cell death during infection byF. tularensisand highlight how shifts in the magnitude and timing of host innate immune responses may lead to dramatic changes in the outcome of infection.


Sign in / Sign up

Export Citation Format

Share Document