scholarly journals Levels of Plasma Immunoglobulin G with Specificity against the Cysteine-Rich Interdomain Regions of a Semiconserved Plasmodium falciparum Erythrocyte Membrane Protein 1, VAR4, Predict Protection against Malarial Anemia and Febrile Episodes

2006 ◽  
Vol 74 (5) ◽  
pp. 2867-2875 ◽  
Author(s):  
John P. A. Lusingu ◽  
Anja T. R. Jensen ◽  
Lasse S. Vestergaard ◽  
Daniel T. Minja ◽  
Michael B. Dalgaard ◽  
...  

ABSTRACT Antibodies to variant surface antigen have been implicated as mediators of malaria immunity in studies measuring immunoglobulin G (IgG) binding to infected erythrocytes. Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) is an important target for these antibodies, but no study has directly linked the presence of PfEMP1 antibodies in children to protection. We measured plasma IgG levels to the cysteine-rich interdomain region 1α (CIDR1α) of VAR4 (VAR4-CIDR1α), a member of a semiconserved PfEMP1 subfamily, by enzyme-linked immunosorbent assay in 561 Tanzanian individuals, who were monitored clinically for 7 months. The participants resided in Mkokola (a high-transmission village where malaria is holoendemic) or Kwamasimba (a moderate-transmission village). For comparison, plasma IgG levels to two merozoite surface protein 1 (MSP1) constructs, MSP1-19 and MSP1 block 2, and a control CIDR1 domain were measured. VAR4-CIDR1α antibodies were acquired at an earlier age in Mkokola than in Kwamasimba, but after the age of 10 years the levels were comparable in the two villages. After controlling for age and other covariates, the risk of having anemia at enrollment was reduced in VAR4-CIDR1α responders for Mkokola (adjusted odds ratio [AOR], 0.49; 95% confidence interval [CI], 0.29 to 0.88; P = 0.016) and Kwamasimba (AOR, 0.33; 95% CI, 0.16 to 0.68; P = 0.003) villages. The risk of developing malaria fever was reduced among individuals with a measurable VAR4-CIDR1α response from Mkokola village (AOR, 0.51; 95% CI, 0.29 to 0.89; P = 0.018) but not in Kwamasimba. Antibody levels to the MSP1 constructs and the control CIDR1α domain were not associated with morbidity protection. These data strengthen the concept of developing vaccines based on PfEMP1.

2006 ◽  
Vol 74 (5) ◽  
pp. 2887-2893 ◽  
Author(s):  
Margaret Pinder ◽  
Colin J. Sutherland ◽  
Fatoumatta Sisay-Joof ◽  
Jamila Ismaili ◽  
Matthew B. B. McCall ◽  
...  

ABSTRACT We examined the hypothesis that recovery from uncomplicated malaria in patients carrying drug-resistant Plasmodium falciparum is a measure of acquired functional immunity and may therefore be associated with humoral responses to candidate vaccine antigens. Gambian children with malaria were treated with chloroquine in 28-day trials, and recovery was defined primarily as the absence of severe clinical malaria at any time and absence of parasitemia with fever after 3 days. Plasma samples from these children were assayed by enzyme-linked immunosorbent assay for immunoglobulin G (IgG) to recombinant merozoite antigens: apical membrane antigen 1 (AMA-1) and the 19-kDa C-terminal region of merozoite surface protein 1 (MSP-119), including antigenic variants of MSP-119 with double and triple substitutions. Antigen-specific IgG was more frequent in children who recovered, particularly that for MSP-119 (age-adjusted odds ratios: 0.32 [95% confidence interval, 0.05, 1.87; P = 0.168] for AMA-1, 0.19 [0.03, 1.11; P = 0.019] for recombinant MSP-119, 0.24 [0.04, 1.31; P = 0.032] for the recombinant MSP-119 double variant, and 0.18 [0.03, 0.97; P = 0.013] for the triple variant). IgG titers to MSP-119 and to the triple variant were higher in plasma samples taken 7 days after chloroquine treatment from children who carried resistant parasites but recovered and remained parasite free. Moreover, in children who were parasitemic on day 14 or day 28, there was an age-independent relationship between parasite density and IgG to both MSP-119 and the triple variant (coefficients of −0.550 and −0.590 and P values of 0.002 and 0.001, respectively). The results validate the use of this approach to identify antigens that are associated with protection from malaria.


2009 ◽  
Vol 77 (9) ◽  
pp. 3857-3863 ◽  
Author(s):  
Alfredo Mayor ◽  
Eduard Rovira-Vallbona ◽  
Anand Srivastava ◽  
Surya K. Sharma ◽  
Sudhanshu S. Pati ◽  
...  

ABSTRACT The Duffy binding-like (DBL) domains are common adhesion modules present in Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) variants, which are responsible for immune evasion and cytoadherence. Knowledge about how immune responses are acquired against polymorphic DBL domains of PfEMP1 can aid in the development of vaccines for malaria. A recombinant DBLα domain, encoded by R29 var1, which binds complement receptor 1 to mediate rosetting by the P. falciparum laboratory strain R29, was expressed in Escherichia coli, renatured by oxidative refolding to its native form, and purified to homogeneity. Antibody levels in 704 plasmas obtained from residents of areas of different levels of malaria endemicity in Orissa (India) and Manhiça (Mozambique) were assessed by enzyme-linked immunosorbent assay. The refolded DBLα domain was pure, homogeneous, and functional in that it bound human erythrocytes with specificity and was capable of inhibiting rosetting. The proportion of individuals who had measurable anti-DBLα immunoglobulin G responses was low in areas of low malaria endemicity in Orissa (6.7%) but high in areas of high endemicity in Orissa (87.5%) and Manhiça (74.5%). Seroprevalence and antibody levels against the recombinant protein increased with the age of inhabitants from areas with high transmission rates (P < 0.001). Half of the children in these areas had seroconverted by the age of 5 years. These findings suggest that in spite of the extreme polymorphism of PfEMP1 DBLα domains, the acquisition of specific antibodies is rapid and age related and reflects the reduced risk of malaria in areas with high transmission rates. Further studies are required to elucidate the role of these antibodies in protection from malaria.


2006 ◽  
Vol 74 (12) ◽  
pp. 6778-6784 ◽  
Author(s):  
Louise Joergensen ◽  
Louise Turner ◽  
Pamela Magistrado ◽  
Madeleine A. Dahlbäck ◽  
Lasse S. Vestergaard ◽  
...  

ABSTRACT The var gene-encoded Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) family is responsible for antigenic variation and sequestration of infected erythrocytes during malaria. We have previously grouped the 60 PfEMP1 variants of P. falciparum clone 3D7 into groups A and B/A (category A) and groups B, B/C, and C (category non-A). Expression of category A molecules is associated with severe malaria, and that of category non-A molecules is associated with uncomplicated malaria and asymptomatic infection. Here we assessed cross-reactivity among 60 different recombinant PfEMP1 domains derived from clone 3D7 by using a competition enzyme-linked immunosorbent assay and a pool of plasma from 63 malaria-exposed Tanzanian individuals. We conclude that naturally acquired antibodies are largely directed toward epitopes varying between different domains with a few, mainly category A, domains sharing cross-reactive antibody epitopes. Identification of groups of serological cross-reacting molecules is pivotal for the development of vaccines based on PfEMP1.


2021 ◽  
Author(s):  
Janavi S Rambhatla ◽  
Gerry Q Tonkin-Hill ◽  
Eizo Takashima ◽  
Takafumi Tsuboi ◽  
Rintis Noviyanti ◽  
...  

Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1), a diverse family of multi-domain proteins expressed on the surface of malaria-infected erythrocytes, is an important target of protective immunity against malaria. Our group recently studied transcription of the var genes encoding PfEMP1 in individuals from Papua, Indonesia with severe or uncomplicated malaria. We cloned and expressed domains from 32 PfEMP1s including 22 that were upregulated in severe malaria and 10 that were upregulated in uncomplicated malaria, using a wheat germ cell-free expression system. We used Luminex technology to measure IgG antibodies to these 32 domains and control proteins in 63 individuals (11 children). At presentation to hospital, levels of antibodies to PfEMP1 domains were either higher in uncomplicated malaria or were not significantly different between groups. Using principal components analysis, antibodies to three of 32 domains were highly discriminatory between groups. These included two domains upregulated in severe malaria, a DBLβ13 domain and a CIDRα1.6 domain (which has been previously implicated in severe malaria pathogenesis), and a DBLδ domain that was upregulated in uncomplicated malaria. Antibody to control non-PfEMP1 antigens did not differ with disease severity. Antibodies to PfEMP1 domains differ with malaria severity. Lack of antibodies to locally expressed PfEMP1 types, including both domains previously associated with severe malaria and newly identified targets, may in part explain malaria severity in Papuan adults. Importance Severe Plasmodium falciparum malaria kills many African children, and lack of antibody immunity predisposes to severe disease. A critical antibody target is the P. falciparum erythrocyte membrane 1 (PfEMP1) family of multidomain proteins, which are expressed on the infected erythrocyte surface and mediate parasite sequestration in deep organs. We previously identified var genes encoding PfEMP1 that were differentially expressed between severe and uncomplicated malaria in Papua, Indonesia. Here, we have expressed domains from 32 of these PfEMP1s and measured IgG antibody responses to them in Papuan adults and children. Using Principal Component Analysis, IgG antibodies to three domains distinguished between severe and uncomplicated malaria and were higher in uncomplicated malaria. Domains included CIDRα1.6, implicated in severe malaria; a DBLβ13 domain; and a DBLδ domain of unknown function. Immunity to locally relevant PfEMP1 domains may protect from severe malaria. Targets of immunity show important overlap between Asian adults and African children.


2013 ◽  
Vol 42 (4) ◽  
pp. 2270-2281 ◽  
Author(s):  
Adam F. Sander ◽  
Thomas Lavstsen ◽  
Thomas S. Rask ◽  
Michael Lisby ◽  
Ali Salanti ◽  
...  

Abstract Many bacterial, viral and parasitic pathogens undergo antigenic variation to counter host immune defense mechanisms. In Plasmodium falciparum, the most lethal of human malaria parasites, switching of var gene expression results in alternating expression of the adhesion proteins of the Plasmodium falciparum-erythrocyte membrane protein 1 class on the infected erythrocyte surface. Recombination clearly generates var diversity, but the nature and control of the genetic exchanges involved remain unclear. By experimental and bioinformatic identification of recombination events and genome-wide recombination hotspots in var genes, we show that during the parasite’s sexual stages, ectopic recombination between isogenous var paralogs occurs near low folding free energy DNA 50-mers and that these sequences are heavily concentrated at the boundaries of regions encoding individual Plasmodium falciparum-erythrocyte membrane protein 1 structural domains. The recombinogenic potential of these 50-mers is not parasite-specific because these sequences also induce recombination when transferred to the yeast Saccharomyces cerevisiae. Genetic cross data suggest that DNA secondary structures (DSS) act as inducers of recombination during DNA replication in P. falciparum sexual stages, and that these DSS-regulated genetic exchanges generate functional and diverse P. falciparum adhesion antigens. DSS-induced recombination may represent a common mechanism for optimizing the evolvability of virulence gene families in pathogens.


1998 ◽  
Vol 187 (1) ◽  
pp. 15-23 ◽  
Author(s):  
Qijun Chen ◽  
Antonio Barragan ◽  
Victor Fernandez ◽  
Annika Sundström ◽  
Martha Schlichtherle ◽  
...  

Severe Plasmodium falciparum malaria is characterized by excessive sequestration of infected and uninfected erythrocytes in the microvasculature of the affected organ. Rosetting, the adhesion of P. falciparum–infected erythrocytes to uninfected erythrocytes is a virulent parasite phenotype associated with the occurrence of severe malaria. Here we report on the identification by single-cell reverse transcriptase PCR and cDNA cloning of the adhesive ligand P. falciparum erythrocyte membrane protein 1 (PfEMP1). Rosetting PfEMP1 contains clusters of glycosaminoglycan-binding motifs. A recombinant fusion protein (Duffy binding-like 1–glutathione S transferase; Duffy binding-like-1–GST) was found to adhere directly to normal erythrocytes, disrupt naturally formed rosettes, block rosette reformation, and bind to a heparin-Sepharose matrix. The adhesive interactions could be inhibited with heparan sulfate or enzymes that remove heparan sulfate from the cell surface whereas other enzymes or similar glycosaminoglycans of a like negative charge did not affect the binding. PfEMP1 is suggested to be the rosetting ligand and heparan sulfate, or a heparan sulfate–like molecule, the receptor both for PfEMP1 binding and naturally formed erythrocyte rosettes.


2018 ◽  
Vol 86 (11) ◽  
Author(s):  
Louise Turner ◽  
Thor G. Theander ◽  
Thomas Lavstsen

ABSTRACT Plasmodium falciparum malaria pathogenesis is tied to the sequestration of parasites in the microvasculature. Parasite sequestration leading to severe malaria is mediated by P. falciparum erythrocyte membrane protein 1 (PfEMP1) binding to endothelial protein C receptor (EPCR) via its CIDRα1 domains. CIDRα1 domains are targets of naturally acquired immunity, and a vaccine eliciting antibodies inhibiting the EPCR binding of CIDRα1 could potentially prevent disease and death from malaria. CIDRα1 domains have diversified in sequence to escape immune recognition but preserved structure to maintain EPCR binding. The EPCR-binding CIDRα1 domains separate into six major sequence types predicted to form a conserved structure in which only the amino acids essential for EPCR binding are highly conserved. Here, we investigated whether antibodies elicited by vaccination with single or multiple recombinant CIDRα1 domains are able to bind and inhibit diverse CIDRα1 domains. We found that EPCR binding-inhibitory antibodies to CIDRα1 variants closely related to those used for vaccination are readily elicited, whereas antibodies binding distant CIDRα1 variants are sporadically generated and are rarely inhibitory. Despite this, sequence similarity correlated poorly with the ability of induced antibodies to inhibit across diverse variants, and no continuous sequence regions of importance for cross-inhibitory antibodies could be identified. This suggested that epitopes of cross-variant inhibitory antibodies were predominantly conformational. Vaccination with immunogens engineered to focus immune responses to specific epitopes or an optimal choice of multiple CIDRα1 variants may improve elicitation of broadly reactive and inhibitory antibody responses.


Sign in / Sign up

Export Citation Format

Share Document