merozoite antigens
Recently Published Documents


TOTAL DOCUMENTS

63
(FIVE YEARS 15)

H-INDEX

19
(FIVE YEARS 3)

2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A51-A51
Author(s):  
David Spezzano ◽  
Peter Jahnmatz ◽  
Evan Johnson

BackgroundAntigenic diversity of the malaria parasite Plasmodium falciparum is a major challenge for vaccine development. Identifying cross-reactive antibodies to polymorphic antigens linked with protection, eg merozoite surface protein 2 (MSP2), could further guide vaccine design. Circulating malaria-specific antibodies are generally short-lived and analysis of memory B-cells (MBC) may therefore better reflect responses of importance for immunity. The B-cell FluoroSpot assay enables a sensitive analysis of antigen-specific B cells, in addition, it allows also for analysis of cross-reactivity displayed by single B cells.MethodsPatients treated for P. falciparum malaria at Karolinska University Hospital in Stockholm Sweden were followed prospectively with repeated sampling over one year. PBMCs were analyzed using a B-cell FluoroSpot assay including P. falciparum antigens MSP-1(19), MSP-3, AMA-1 and different variants of MSP2. The gene coding for the polymorphic region of MSP-2 from the patient‘s own parasite was amplified, sequenced and recombinantly expressed together with a peptide tag that enabled detection in the FluoroSpot assay. Combinations of MSP2 variants were tested for homologous and heterologous responses.ResultsPreliminary results show that the FluoroSpot assay was able to simultaneously detect single MBCs specific against the different merozoite antigens in the same well including either one of the antigen variant of MSP-2 in patients with single or repeated exposure to malaria (figure 1). Cross-reactivity displayed by single B cells to different MSP2 antigens was detected in variants within the two respective allelic families FC27 and 3D7 but not between allelic families. Further analyses are ongoing involving additional antigens as well as individuals with different degree of pre-existing immunity.Abstract 44 Figure 1Detection of memory B cells cross-reactive against polymorph. Detection of memory B cells cross-reactive against polymorphic malaria antigens using a multiplex FluoroSpot assayConclusionsPreliminary results suggest that this novel multiplex B-cell FluoroSpot assay could be a powerful tool to analyze antigen-specificity and antibody cross-reactivity to polymorphic merozoite antigens and its association with previous exposure and immunity.


Author(s):  
YAMMAN-USMAN HADIJAH ◽  
OMALU CJ INNOCENT ◽  
ABUBAKAR ABDULKADIR ◽  
ABOLARINWA SO ◽  
EKE S SAMUEL ◽  
...  

Objective: A cross-sectional study was carried out in a representative cohort of children in Minna aged 6 months–17 years to determine the correlation between immunoglobulin G (IgG) antibody responses to Plasmodium falciparum merozoite antigens. Methods: Plasma samples from 93 children were exposed to Enzyme-Linked Immunosorbent Assay for the measurement of IgG antibody production against P. falciparum. Results: There was a high seroprevalence of IgG antibody against P. falciparum antigens tested with 74.20%. The seroprevalence for the male category was quite higher as compared with that of the female category, though, analysis using Mann–Whitney U-test revealed IgG antibody response to P. falciparum infection in the male was significantly different as compared to the female category (p<0.05). Furthermore, the prevalence of IgG antibody against P. falciparum antigen increased with age, with the lowest observed in 6 months–5 years 66.66%. Kruskal–Wallis H test showed a non-significant difference in the production of IgG antibody against P. falciparum antigen between different cohorts, and no correlation exists between them (p>0.05). An evidence of more than 50% was found for the production of IgG antibody by sub-microscopic parasite. On the other hand, microscopically positive P. falciparum samples recorded more seroprevalence of 68.81% as against negative samples, though significant difference between the negative and positive P. falciparum infected samples and the production of IgG antibody was not observed (p>0.05). Conclusion: This study has demonstrated a boosting immune responses by sub-microscopic parasite and also suggests a strong relationship between production of IgG antibody and malaria transmission, rather than protective immunity.


2021 ◽  
Author(s):  
Samuel Tassi Yunga ◽  
Naveen Bobbili ◽  
Yukie M. Lloyd ◽  
Jovikka Antallan ◽  
Masako Matsunaga ◽  
...  

Introduction: High avidity antibodies (Abs) are acquired after a few Plasmodium falciparum infections in low transmission areas, but it remains unclear if Ab avidity to different merozoite antigens increases with age in individuals with persistent antigenemia and if so, when a fully mature Ab response occurs. Methods: The study used plasma samples collected between 1996 and 1998 from 566 individuals aged 4-84 years in Simbok, Cameroon where residents received an estimated 1.6 infectious mosquito bites/person/night. Plasma samples were examined for Ab levels (median fluorescence intensity, MFI) and Ab avidity index (AI = [MFI after treatment with 2M NH4SCN/MFI without salt] x 100) using a bead-based multiplex immunoassay for recombinant AMA1, EBA-175, MSP1-42 (3D7, FVO), MSP2 (3D7, Fc27), and MSP3. Results: Blood-smear positivity for P. falciparum declined with age from 54.3% at 4-5 years to 18% at 16-40 years and <11% at >40 years of age, although most individuals had submicroscopic parasitemia. Ab affinity maturation, based on age-related patterns of median AI, percent of individuals with AI ≥50 and strength of association between MFI and AI, occurred at different rates among the antigens: developing rapidly before age 4 years for AMA1, increasing gradually with age for EBA-175 and MSP1 until ∼16-25 years, but occurring negligibly for MSP2 and MSP3. Conclusion: In a hyperendemic area with perennial transmission, affinity maturation resulting in an increase in the proportion of high avidity Abs occurred for some merozoite antigens, in parallel with a decline in malaria slide passivity, but not for others.


2021 ◽  
Vol 11 ◽  
Author(s):  
Peter Jahnmatz ◽  
Christopher Sundling ◽  
Victor Yman ◽  
Linnea Widman ◽  
Muhammad Asghar ◽  
...  

Memory B cells (MBCs) are believed to be important for the maintenance of immunity to malaria, and these cells need to be explored in the context of different parasite antigens and their breadth and kinetics after natural infections. However, frequencies of antigen-specific MBCs are low in peripheral blood, limiting the number of antigens that can be studied, especially when small blood volumes are available. Here, we developed a multiplexed reversed B-cell FluoroSpot assay capable of simultaneously detecting MBCs specific for the four Plasmodium falciparum blood-stage antigens, MSP-119, MSP-2, MSP-3 and AMA-1. We used the assay to study the kinetics of the MBC response after an acute episode of malaria and up to one year following treatment in travelers returning to Sweden from sub-Saharan Africa. We show that the FluoroSpot assay can detect MBCs to all four merozoite antigens in the same well, and that the breadth and kinetics varied between individuals. We further found that individuals experiencing a primary infection could mount and maintain parasite-specific MBCs to a similar extent as previously exposed adults, already after a single infection. We conclude that the multiplexed B-cell FluoroSpot is a powerful tool for assessing antigen-specific MBC responses to several antigens simultaneously, and that the kinetics of MBC responses against merozoite surface antigens differ over the course of one year. These findings contribute to the understanding of acquisition and maintenance of immune responses to malaria.


PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0243943
Author(s):  
Melanie R. Walker ◽  
Anne S. Knudsen ◽  
Frederica D. Partey ◽  
Maria R. Bassi ◽  
Asger M. Frank ◽  
...  

Developing a vaccine against Plasmodium falciparum malaria has been challenging, primarily due to high levels of antigen polymorphism and a complex parasite lifecycle. Immunization with the P. falciparum merozoite antigens PfMSRP5, PfSERA9, PfRAMA, PfCyRPA and PfRH5 has been shown to give rise to growth inhibitory and synergistic antisera. Therefore, these five merozoite proteins are considered to be promising candidates for a second-generation multivalent malaria vaccine. Nevertheless, little is known about IgG and IgM responses to these antigens in populations that are naturally exposed to P. falciparum. In this study, serum samples from clinically immune adults and malaria exposed children from Ghana were studied to compare levels of IgG and IgM specific for PfMSRP5, PfSERA9, PfRAMA, PfCyRPA and PfRH5. All five antigens were found to be specifically recognized by both IgM and IgG in serum from clinically immune adults and from children with malaria. Longitudinal analysis of the latter group showed an early, transient IgM response that was followed by IgG, which peaked 14 days after the initial diagnosis. IgG levels and parasitemia did not correlate, whereas parasitemia was weakly positively correlated with IgM levels. These findings show that IgG and IgM specific for merozoite antigens PfMSRP5, PfSERA9, PfRAMA, PfCyRPA and PfRH5 are high in children during P. falciparum malaria, but that the IgM induction and decline occurs earlier in infection than that of IgG.


2020 ◽  
Author(s):  
Xingju Song ◽  
Xu Yang ◽  
Taotao Zhang ◽  
Jing Liu ◽  
Qun Liu

PLoS ONE ◽  
2020 ◽  
Vol 15 (11) ◽  
pp. e0242012
Author(s):  
Crespo’o Mbe-cho Ndiabamoh ◽  
Gabriel Loni Ekali ◽  
Livo Esemu ◽  
Yukie Michelle Lloyd ◽  
Jean Claude Djontu ◽  
...  

Background Co-infection with malaria and intestinal parasites is common in children in Africa and may affect their immune response to a malaria parasite infection. Prior studies suggest that co-infections may lead to increased susceptibility to malaria infection and disease severity; however, other studies have shown the reverse. Knowledge on how co-morbidities specifically affect the immune response to malaria antigens is limited. Therefore, this study sought to determine the prevalence of co-infection of malaria and intestinal parasites and its association with antibody levels to malaria merozoite antigens. Methods A cross sectional study was carried out in two villages with high transmission of malaria in Cameroon (Ngali II and Mfou) where mass drug administration (MDA) had been administered at ~6-month intervals (generally with albendazole or mebendazole). Children aged 1–15 years were enrolled after obtaining parental consent. A malaria rapid diagnostic test was used on site. Four (4) ml of peripheral blood was collected from each participant to determine Plasmodium falciparum infections by microscopy, haemoglobin levels and serology. Fresh stool samples were collected and examined by wet mount, Kato-Katz method and modified Ritchie concentration techniques. A Multiplex Analyte Platform assay was used to measure antibody levels. Results A total of 320 children were enrolled. The prevalence of malaria by blood smear was 76.3% (244/320) and prevalence of malaria and intestinal parasites was 16.9% (54/320). Malaria prevalence was highest in young children; whereas, intestinal parasites (IP+) were not present until after 3 years of age. All children positive for malaria had antibodies to MSP142, MSP2, MSP3 and EBA175. No difference in antibody levels in children with malaria-co infections compared to malaria alone were found, except for antibody levels to EBA-175 were higher in children co-infected with intestinal protozoa (p = 0.018), especially those with Entamoeba histolytica infections (p = 0.0026). Conclusion Antibody levels to EBA175 were significantly higher in children co-infected with malaria and E. histolytica compared to children infected with malaria alone. It is important to further investigate why and how the presence of these protozoans might modulate the immune response to malaria antigens.


2020 ◽  
Vol 19 (1) ◽  
Author(s):  
Diane Wallace Taylor ◽  
Naveen Bobbili ◽  
Alex Kayatani ◽  
Samuel Tassi Yunga ◽  
Winifrida Kidima ◽  
...  

2020 ◽  
Author(s):  
Diane Wallace Taylor ◽  
Naveen Bobbili ◽  
Alexander K Kayatani ◽  
Samuel Tassi-Yunga ◽  
Winifrida Kidima ◽  
...  

Abstract Background: Antibodies (Ab) play a significant role in immunity to Plasmodium falciparum malaria. Usually, following repeated exposure to pathogens, affinity maturation and clonal selection take place, resulting in increased antibody avidity. However, some studies suggest affinity maturation may not occur to malaria antigens in endemic areas. Information on development of antibody avidity is confusing and conflicting, in part, because different techniques have been used to measure avidity. Today, bead-based multiplex immunoassays (MIA) are routinely used to simultaneously quantitate antibody levels to multiple antigens. This study evaluated the feasibility of developing an avidity MIA with 5 merozoite antigens (AMA1, EBA-175, MSP1-42, MSP2, MSP3) that uses a single chaotropic concentration.Methods: The most common ELISA protocols that used the chaotropic reagents guanidine HCl (GdHCl), urea, and ammonium thiocyanate (NH4SCN) were adapted to a multiplex MIA format. Then, different concentrations of chaotropes and incubation times were compared and results were expressed as an Avidity Index (AI), i.e., percentage of antibody remaining bound in the presence of chaotrope. Experiments were conducted to i) identify the assay with the widest range of AI (discriminatory power), ii) determine the amount of chaotrope needed to release 50% of bound Ab using plasma from adults and infants, and iii) evaluate assay repeatability. Results: Overall, 4M GdHCl and 8M urea were weaker chaotropes than 3M NH4SCN. For example, they failed to release significant amounts of Ab bound to MSP1-42 in adult plasma samples; whereas, a range of AI values was obtained with NH4SCN. Titration of NH4SCN revealed that 2M NH4SCN gave the widest range of AI for the 5 antigens. Binding studies using plasma from 40 adults and 57 one-year old infants in Cameroon showed that 2.1M ± 0.32 (mean ± SD) NH4SCN (adults) and 1.8M ± 0.23M (infants) released 50% of bound Ab from the merozoite antigens. Conclusions: An avidity MIA is feasible for the 5 merozoite antigens that uses a single concentration (2M) of NH4SCN. The assay provides a simple method to quickly obtain information about Ab quantity and quality in the acquisition of immunity to malaria in endemic populations.


2020 ◽  
Author(s):  
Diane Wallace Taylor ◽  
Naveen Bobbili ◽  
Alexander K Kayatani ◽  
Samuel Tassi-Yunga ◽  
Winifrida Kidima ◽  
...  

Abstract Background: Antibodies (Ab) play a significant role in immunity to Plasmodium falciparum malaria. Usually, following repeated exposure to pathogens, affinity maturation and clonal selection take place, resulting in increased antibody avidity. However, some studies suggest affinity maturation may not occur to malaria antigens in endemic areas. Information on development of antibody avidity is confusing and conflicting, in part, because different techniques have been used to measure avidity. Today, bead-based multiplex immunoassays (MIA) are routinely used to simultaneously quantitate antibody levels to multiple antigens. This study evaluated the feasibility of developing an avidity MIA with 5 merozoite antigens (AMA1, EBA-175, MSP1-42, MSP2, MSP3) that uses a single chaotropic concentration.Methods: The most common ELISA protocols that used the chaotropic reagents guanidine HCl (GdHCl), urea, and ammonium thiocyanate (NH4SCN) were adapted to a multiplex MIA format. Then, different concentrations of chaotropes and incubation times were compared and results were expressed as an Avidity Index (AI), i.e., percentage of antibody remaining bound in the presence of chaotrope. Experiments were conducted to i) identify the assay with the widest range of AI (discriminatory power), ii) determine the amount of chaotrope needed to release 50% of bound Ab using plasma from adults and infants, and iii) evaluate assay repeatability. Results: Overall, 4M GdHCl and 8M urea were weaker chaotropes than 3M NH4SCN. For example, they failed to release significant amounts of Ab bound to MSP1-42 in adult plasma samples; whereas, a range of AI values was obtained with NH4SCN. Titration of NH4SCN revealed that 2M NH4SCN gave the widest range of AI for the 5 antigens. Binding studies using plasma from 40 adults and 57 one-year old infants in Cameroon showed that 2.1M ± 0.32 (mean ± SD) NH4SCN (adults) and 1.8M ± 0.23M (infants) released 50% of bound Ab from the merozoite antigens. Conclusions. An avidity MIA is feasible for the 5 merozoite antigens that uses a single concentration (2M) of NH4SCN. The assay provides a simple method to quickly obtain information about Ab quantity and quality in the acquisition of immunity to malaria in endemic populations.


Sign in / Sign up

Export Citation Format

Share Document