scholarly journals The Escherichia coli Regulator of Sigma 70 Protein, Rsd, Can Up-Regulate Some Stress-Dependent Promoters by Sequestering Sigma 70

2007 ◽  
Vol 189 (9) ◽  
pp. 3489-3495 ◽  
Author(s):  
Jennie E. Mitchell ◽  
Taku Oshima ◽  
Sarah E. Piper ◽  
Christine L. Webster ◽  
Lars F. Westblade ◽  
...  

ABSTRACT The Escherichia coli Rsd protein forms complexes with the RNA polymerase σ70 factor, but its biological role is not understood. Transcriptome analysis shows that overexpression of Rsd causes increased expression from some promoters whose expression depends on the alternative σ38 factor, and this was confirmed by experiments with lac fusions at selected promoters. The LP18 substitution in Rsd increases the Rsd-dependent stimulation of these promoter-lac fusions. Analysis with a bacterial two-hybrid system shows that the LP18 substitution in Rsd increases its interaction with σ70. Our experiments support a model in which the role of Rsd is primarily to sequester σ70, thereby increasing the levels of RNA polymerase containing the alternative σ38 factor.

2018 ◽  
Vol 115 (14) ◽  
pp. 3698-3703 ◽  
Author(s):  
Xiaofan Jin ◽  
Ingmar H. Riedel-Kruse

Bacterial biofilms represent a promising opportunity for engineering of microbial communities. However, our ability to control spatial structure in biofilms remains limited. Here we engineerEscherichia coliwith a light-activated transcriptional promoter (pDawn) to optically regulate expression of an adhesin gene (Ag43). When illuminated with patterned blue light, long-term viable biofilms with spatial resolution down to 25 μm can be formed on a variety of substrates and inside enclosed culture chambers without the need for surface pretreatment. A biophysical model suggests that the patterning mechanism involves stimulation of transiently surface-adsorbed cells, lending evidence to a previously proposed role of adhesin expression during natural biofilm maturation. Overall, this tool—termed “Biofilm Lithography”—has distinct advantages over existing cell-depositing/patterning methods and provides the ability to grow structured biofilms, with applications toward an improved understanding of natural biofilm communities, as well as the engineering of living biomaterials and bottom–up approaches to microbial consortia design.


Genetics ◽  
1991 ◽  
Vol 128 (1) ◽  
pp. 45-57 ◽  
Author(s):  
C T Kuan ◽  
S K Liu ◽  
I Tessman

Abstract Excision and transposition of the Tn5 element in Escherichia coli ordinarily appear to occur by recA-independent mechanisms. However, recA(Prtc) genes, which encode RecA proteins that are constitutively activated to the protease state, greatly enhanced excision and transposition; both events appeared to occur concomitantly and without destruction of the donor DNA. The recombinase function of the RecA protein was not required. Transposition was accompanied by partial, and occasionally full, restoration of the functional integrity of the gene vacated by the excised Tn5. The stimulation of transposition was inhibited by an uncleavable LexA protein and was strongly enhanced by an additional role of the RecA(Prtc) protein besides its mediation of LexA cleavage. To account for the enhanced transposition, we suggest that (i) there may be a LexA binding site within the promoter for the IS50 transposase, (ii) activated RecA may cleave the IS50 transposition inhibitor, and (iii) the transposase may be formed by RecA cleavage of a precursor molecule.


2000 ◽  
Vol 299 (5) ◽  
pp. 1217-1230 ◽  
Author(s):  
Gianina Panaghie ◽  
Sarah E. Aiyar ◽  
Kathryn L. Bobb ◽  
Richard S. Hayward ◽  
Pieter L. de Haseth

Science ◽  
1995 ◽  
Vol 270 (5238) ◽  
pp. 992-994 ◽  
Author(s):  
J. T. Wang ◽  
A. Syed ◽  
M. Hsieh ◽  
J. D. Gralla

Sign in / Sign up

Export Citation Format

Share Document