precursor molecule
Recently Published Documents


TOTAL DOCUMENTS

97
(FIVE YEARS 11)

H-INDEX

26
(FIVE YEARS 1)

IUCrData ◽  
2021 ◽  
Vol 6 (10) ◽  
Author(s):  
Daniel D. Hickstein ◽  
Eric W. Reinheimer ◽  
Adam R. Johnson ◽  
Daniel J. O'Leary

While endeavoring to synthesize new chlorinated ligands for ruthenium-based metathesis catalysts, the title compound dimethyl 4,5-dichlorophthalate, C10H8Cl2O4, was prepared from commercially available 4,5-dichlorophthalic acid in ∼77% yield. The title molecule, which also finds utility as a precursor molecule for the synthesis of drugs used in the treatment of Alzheimer's disease, shows one carbonyl-containing methyl ester moiety lying nearly co-planar with the chlorine-derivatized aromatic ring while the second methyl ester shows a significant deviation of 101.05 (12)° from the least-squares plane of the aromatic ring. Within the crystal, structural integrity is maintained by the concerted effects of electrostatic interactions involving the electron-deficient carbonyl carbon atom and the electron-rich aromatic ring along the a-axis direction and C—H...O hydrogen bonds between neighboring molecules parallel to b.


Author(s):  
Laura Wienands ◽  
Franziska Theiß ◽  
James Eills ◽  
Lorenz Rösler ◽  
Stephan Knecht ◽  
...  

AbstractParahydrogen-induced polarization is a hyperpolarization method for enhancing nuclear magnetic resonance signals by chemical reactions/interactions involving the para spin isomer of hydrogen gas. This method has allowed for biomolecules to be hyperpolarized to such a level that they can be used for real time in vivo metabolic imaging. One particularly promising example is fumarate, which can be rapidly and efficiently hyperpolarized at low cost by hydrogenating an acetylene dicarboxylate precursor molecule using parahydrogen. The reaction is relatively slow compared to the timescale on which the hyperpolarization relaxes back to thermal equilibrium, and an undesirable 2nd hydrogenation step can convert the fumarate into succinate. To date, the hydrogenation chemistry has not been thoroughly investigated, so previous work has been inconsistent in the chosen reaction conditions in the search for ever-higher reaction rate and yield. In this work we investigate the solution preparation protocols and the reaction conditions on the rate and yield of fumarate formation. We report conditions to reproducibly yield over 100 mM fumarate on a short timescale, and discuss aspects of the protocol that hinder the formation of fumarate or lead to irreproducible results. We also provide experimental procedures and recommendations for performing reproducible kinetics experiments in which hydrogen gas is repeatedly bubbled into an aqueous solution, overcoming challenges related to the viscosity and surface tension of the water.


Author(s):  
Todd W. Hudnall ◽  
Eric W. Reinheimer ◽  
Christopher L. Dorsey

The synthesis, single-crystal X-ray structure, and 1H and 13C NMR spectrocopic analyses of an unyielding precursor molecule to a cyclic (alkyl)(amido)carbene, 1-chloro-2-(2,6-diisopropylphenyl)-4,4-dimethyl-2-azaspiro[5.5]undecane-3,5-dione, C24H34ClNO2 (1), is reported. Despite the use of several bases, 1 could not be deprotonated to afford the corresponding carbene. The crystal structure of 1 was compared to the crystal structures of two structurally similar HCl adducts of stable carbenes (compounds 4 and 5), which revealed no significant differences in the geometries about the `carbene' C atoms. To better understand the reactivity differences observed for 1 when compared to 4 and 5, modified percent buried volume (%V bur) calculations were performed. These calculations revealed that the H atom bound to the carbene C atom is the most sterically hindered in compound 1 when compared to 4 and 5 (%V bur = 84.9, 81.3, and 79.3% for 1, 4, and 5, respectively). Finally, close inspection of the quadrant-specific %V bur values indicated that the approach of a deprotonating base to the H atom bound to the carbene C atom is significantly blocked in 1 (69.9%) when compared to 4 and 5 (50.4 and 56.5%, respectively).


mBio ◽  
2021 ◽  
Vol 12 (2) ◽  
Author(s):  
L. Zhang ◽  
K. Ramijan ◽  
V. J. Carrión ◽  
L. T. van der Aart ◽  
J. Willemse ◽  
...  

ABSTRACT The cell wall is a stress-bearing structure and a unifying trait in bacteria. Without exception, synthesis of the cell wall involves formation of the precursor molecule lipid II by the activity of the essential biosynthetic enzyme MurG, which is encoded in the division and cell wall synthesis (dcw) gene cluster. Here, we present the discovery of a cell wall enzyme that can substitute for MurG. A mutant of Kitasatospora viridifaciens lacking a significant part of the dcw cluster, including murG, surprisingly produced lipid II and wild-type peptidoglycan. Genomic analysis identified a distant murG homologue, which encodes a putative enzyme that shares only around 31% amino acid sequence identity with MurG. We show that this enzyme can replace the canonical MurG, and we therefore designated it MglA. Orthologues of mglA are present in 38% of all genomes of Kitasatospora and members of the sister genus Streptomyces. CRISPR interference experiments showed that K. viridifaciens mglA can also functionally replace murG in Streptomyces coelicolor, thus validating its bioactivity and demonstrating that it is active in multiple genera. All together, these results identify MglA as a bona fide lipid II synthase, thus demonstrating plasticity in cell wall synthesis. IMPORTANCE Almost all bacteria are surrounded by a cell wall, which protects cells from environmental harm. Formation of the cell wall requires the precursor molecule lipid II, which in bacteria is universally synthesized by the conserved and essential lipid II synthase MurG. We here exploit the unique ability of an actinobacterial strain capable of growing with or without its cell wall to discover an alternative lipid II synthase, MglA. Although this enzyme bears only weak sequence similarity to MurG, it can functionally replace MurG and can even do so in organisms that naturally have only a canonical MurG. The observation that MglA proteins are found in many actinobacteria highlights the plasticity in cell wall synthesis in these bacteria and demonstrates that important new cell wall biosynthetic enzymes remain to be discovered.


2021 ◽  
Author(s):  
Rajkumar Sunil Singh ◽  
Wangkhem Paikhomba Singh ◽  
Sanjeev Bhandari

Bisphenol A, a common precursor molecule used in the preparation of some polymers, was investigated as a possible scaffold for the design and synthesis of small-molecule gelators. To this end,...


2021 ◽  
Author(s):  
Neeraj Soni ◽  
Shivendra Singh ◽  
Shubham Sharma ◽  
Gayatri Batra ◽  
Kush Kaushik ◽  
...  

Herein we unveil the presence of a molecular fluorophore quinoxalino[2,3-b]phenazine-2,3-diamine (QXPDA) in a colossal amount in red emissive CNDs synthesized from o-phenylenediamine, a well-known precursor molecule used for CND synthesis.


2020 ◽  
Author(s):  
L. Zhang ◽  
K. Ramijan ◽  
V.J. Carrión ◽  
L.T van der Aart ◽  
J. Willemse ◽  
...  

ABSTRACTThe cell wall is a stress-bearing structure and a unifying trait in bacteria. Without exception, synthesis of the cell wall involves formation of the precursor molecule Lipid II by the activity of the essential biosynthetic enzyme MurG, which is encoded in the division and cell wall synthesis (dcw) gene cluster. Here we present the discovery of a novel cell wall enzyme that can substitute for MurG. A mutant of Kitasatospora viridifaciens lacking a significant part of the dcw cluster including murG surprisingly produced Lipid II and wild-type peptidoglycan. Genomic analysis identified a distant murG paralogue, which encodes a putative enzyme that shares only around 31% aa sequence identity with MurG. We show that this enzyme can replace the canonical MurG, and we therefore designated it MurG2. Orthologues of murG2 are present in 38% of all genomes of Kitasatosporae and members of the sister genus Streptomyces. CRISPRi experiments showed that K. viridifaciens murG2 can also functionally replace murG in Streptomyces coelicolor, thus validating its bioactivity and demonstrating that it is active in multiple genera. Altogether, these results identify MurG2 as a bona fide Lipid II synthase, thus demonstrating plasticity in cell wall synthesis.


Sign in / Sign up

Export Citation Format

Share Document