scholarly journals The Methanothermobacter thermautotrophicus Cdc6-2 Protein, the Putative Helicase Loader, Dissociates the Minichromosome Maintenance Helicase

2008 ◽  
Vol 190 (11) ◽  
pp. 4091-4094 ◽  
Author(s):  
Jae-Ho Shin ◽  
Gun Young Heo ◽  
Zvi Kelman

ABSTRACT The Cdc6-1 and -2 proteins from the archaeon Methanothermobacter thermautotrophicus were previously shown to bind the minichromosome maintenance (MCM) helicase. It is shown here that Cdc6-2 protein dissociates the MCM complex. This observation supports the hypothesis that the Cdc6-2 protein functions as a helicase loader.

2006 ◽  
Vol 188 (12) ◽  
pp. 4577-4580 ◽  
Author(s):  
Rajesh Kasiviswanathan ◽  
Jae-Ho Shin ◽  
Zvi Kelman

ABSTRACT The Cdc6 proteins from the archaeon Methanothermobacter thermautotrophicus were previously shown to bind double-stranded DNA. It is shown here that the proteins also bind single-stranded DNA. Using minichromosome maintenance (MCM) helicase mutant proteins unable to bind DNA, it was found that the interaction of MCM with Cdc6 inhibits the DNA binding activity of Cdc6.


2008 ◽  
Vol 36 (1) ◽  
pp. 136-140 ◽  
Author(s):  
Alessandro Costa ◽  
Silvia Onesti

The MCM2–MCM7 (minichromosome maintenance 2–7) complex is involved both in the initiation and the elongation step of eukaryotic DNA replication and is believed to be the replicative helicase. Whereas the mechanism of DNA unwinding at the replication fork has been extensively investigated, the role of the MCM2–MCM7 complex during initiation has not yet been characterized by biochemical studies. Here we summarize the in vivo evidence which supports a role for the MCM complex in origin melting. In addition, we present an overview of the mechanism of action of a number of AAA+ (ATPase associated with various cellular activities) initiators and hexameric helicases, which can be used in turn as models for the steps of recognition, duplex melting, loading and nucleic acid translocation of the MCM helicase.


2007 ◽  
Vol 27 (13) ◽  
pp. 4737-4744 ◽  
Author(s):  
Lingfei Luo ◽  
Yvonne Uerlings ◽  
Nicole Happel ◽  
Naisana S. Asli ◽  
Hendrik Knoetgen ◽  
...  

ABSTRACT The geminin protein functions both as a DNA rereplication inhibitor through association with Cdt1 and as a repressor of Hox gene transcription through the polycomb pathway. Here, we report that the functions of avian geminin are coordinated with and regulated by cell cycle-dependent nuclear-cytoplasmic shuttling. In S phase, geminin enters nuclei and inhibits both loading of the minichromosome maintenance (MCM) complex onto chromatin and Hox gene transcription. At the end of mitosis, geminin is exported from nuclei by the exportin protein Crm1 and is unavailable in the nucleus during the next G1 phase, thus ensuring proper chromatin loading of the MCM complex and Hox gene transcription. This mechanism for regulating the functions of geminin adds to distinct mechanisms, such as protein degradation and ubiquitination, applied in other vertebrates.


2006 ◽  
Vol 282 (7) ◽  
pp. 4908-4915 ◽  
Author(s):  
Jae-Ho Shin ◽  
Thomas J. Santangelo ◽  
Yunwei Xie ◽  
John N. Reeve ◽  
Zvi Kelman

Protein-DNA complexes must be disassembled to facilitate DNA replication. Replication forks contain a helicase that unwinds the duplex DNA at the front of the fork. The minichromosome maintenance helicase from the archaeon Methanothermobacter thermautotrophicus required only ATP to unwind DNA bound into complexes by the M. thermautotrophicus archaeal histone HMtA2, transcription repressor TrpY, or into a transcription pre-initiation complex by M. thermautotrophicus TATA-box-binding protein, transcription factor B, and RNA polymerase. In contrast, the minichromosome maintenance helicase was unable to unwind DNA bound by this archaeal RNA polymerase in a stalled transcript-elongating complex.


2002 ◽  
Vol 13 (2) ◽  
pp. 607-620 ◽  
Author(s):  
Gina Schwed ◽  
Noah May ◽  
Yana Pechersky ◽  
Brian R. Calvi

Duplication of the eukaryotic genome initiates from multiple origins of DNA replication whose activity is coordinated with the cell cycle. We have been studying the origins of DNA replication that control amplification of eggshell (chorion) genes duringDrosophila oogenesis. Mutation of genes required for amplification results in a thin eggshell phenotype, allowing a genetic dissection of origin regulation. Herein, we show that one mutation corresponds to a subunit of the minichromosome maintenance (MCM) complex of proteins, MCM6. The binding of the MCM complex to origins in G1 as part of a prereplicative complex is critical for the cell cycle regulation of origin licensing. We find that MCM6 associates with other MCM subunits during amplification. These results suggest that chorion origins are bound by an amplification complex that contains MCM proteins and therefore resembles the prereplicative complex. Lethal alleles of MCM6 reveal it is essential for mitotic cycles and endocycles, and suggest that its function is mediated by ATP. We discuss the implications of these findings for the role of MCMs in the coordination of DNA replication during the cell cycle.


2007 ◽  
Vol 27 (21) ◽  
pp. 7594-7602 ◽  
Author(s):  
Margaret L. Hoang ◽  
Ronald P. Leon ◽  
Luis Pessoa-Brandao ◽  
Sonia Hunt ◽  
M. K. Raghuraman ◽  
...  

ABSTRACT Eukaryotic chromosomal replication is a complicated process with many origins firing at different efficiencies and times during S phase. Prereplication complexes are assembled on all origins in G1 phase, and yet only a subset of complexes is activated during S phase by DDK (for Dbf4-dependent kinase) (Cdc7-Dbf4). The yeast mcm5-bob1 (P83L) mutation bypasses DDK but results in reduced intrinsic firing efficiency at 11 endogenous origins and at origins located on minichromosomes. Origin efficiency may result from Mcm5 protein assuming an altered conformation, as predicted from the atomic structure of an archaeal MCM (for minichromosome maintenance) homologue. Similarly, an intragenic mutation in a residue predicted to interact with P83L suppresses the mcm5-bob1 bypass phenotype. We propose DDK phosphorylation of the MCM complex normally results in a single, highly active conformation of Mcm5, whereas the mcm5-bob1 mutation produces a number of conformations, only one of which is permissive for origin activation. Random adoption of these alternate states by the mcm5-bob1 protein can explain both how origin firing occurs independently of DDK and why origin efficiency is reduced. Because similar mutations in mcm2 and mcm4 cannot bypass DDK, Mcm5 protein may be a unique Mcm protein that is the final target of DDK regulation.


2005 ◽  
Vol 280 (49) ◽  
pp. 40909-40915 ◽  
Author(s):  
Yacob Gómez-Llorente ◽  
Ryan J. Fletcher ◽  
Xiaojiang S. Chen ◽  
José M. Carazo ◽  
Carmen San Martín

2011 ◽  
Vol 436 (2) ◽  
pp. 409-414 ◽  
Author(s):  
Li Phing Liew ◽  
Stephen D. Bell

The MCM (minichromosome maintenance) proteins of archaea are widely believed to be the replicative DNA helicase of these organisms. Most archaea possess a single MCM orthologue that forms homo-multimeric assemblies with a single hexamer believed to be the active form. In the present study we characterize the roles of highly conserved residues in the ATPase domain of the MCM of the hyperthermophilic archaeon Sulfolobus solfataricus. Our results identify a potential conduit for communicating DNA-binding information to the ATPase active site.


2008 ◽  
Vol 284 (9) ◽  
pp. 5654-5661 ◽  
Author(s):  
Elizabeth R. Jenkinson ◽  
Alessandro Costa ◽  
Andrew P. Leech ◽  
Ardan Patwardhan ◽  
Silvia Onesti ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document