elongation step
Recently Published Documents


TOTAL DOCUMENTS

45
(FIVE YEARS 12)

H-INDEX

17
(FIVE YEARS 1)

Open Biology ◽  
2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Abderhman Abuhashem ◽  
Vidur Garg ◽  
Anna-Katerina Hadjantonakis

The coordinated regulation of transcriptional networks underpins cellular identity and developmental progression. RNA polymerase II promoter-proximal pausing (Pol II pausing) is a prevalent mechanism by which cells can control and synchronize transcription. Pol II pausing regulates the productive elongation step of transcription at key genes downstream of a variety of signalling pathways, such as FGF and Nodal. Recent advances in our understanding of the Pol II pausing machinery and its role in transcription call for an assessment of these findings within the context of development. In this review, we discuss our current understanding of the molecular basis of Pol II pausing and its function during organismal development. By critically assessing the tools used to study this process we conclude that combining recently developed genomics approaches with refined perturbation systems has the potential to expand our understanding of Pol II pausing mechanistically and functionally in the context of development and beyond.


2021 ◽  
Vol 118 (48) ◽  
pp. e2111862118
Author(s):  
Lunda Shen ◽  
Zhaoming Su ◽  
Kailu Yang ◽  
Cheng Wu ◽  
Thomas Becker ◽  
...  

Ribosomes translate RNA into proteins. The protein synthesis inhibitor cycloheximide (CHX) is widely used to inhibit eukaryotic ribosomes engaged in translation elongation. However, the lack of structural data for actively translating polyribosomes stalled by CHX leaves unanswered the question of which elongation step is inhibited. We elucidated CHX’s mechanism of action based on the cryo-electron microscopy structure of actively translating Neurospora crassa ribosomes bound with CHX at 2.7-Å resolution. The ribosome structure from this filamentous fungus contains clearly resolved ribosomal protein eL28, like higher eukaryotes but unlike budding yeast, which lacks eL28. Despite some differences in overall structures, the ribosomes from Neurospora, yeast, and humans all contain a highly conserved CHX binding site. We also sequenced classic Neurospora CHX-resistant alleles. These mutations, including one at a residue not previously observed to affect CHX resistance in eukaryotes, were in the large subunit proteins uL15 and eL42 that are part of the CHX-binding pocket. In addition to A-site transfer RNA (tRNA), P-site tRNA, messenger RNA, and CHX that are associated with the translating N. crassa ribosome, spermidine is present near the CHX binding site close to the E site on the large subunit. The tRNAs in the peptidyl transferase center are in the A/A site and the P/P site. The nascent peptide is attached to the A-site tRNA and not to the P-site tRNA. The structural and functional data obtained show that CHX arrests the ribosome in the classical PRE translocation state and does not interfere with A-site reactivity.


2021 ◽  
Author(s):  
Megha Jhanji ◽  
Chintada Nageswara Rao ◽  
Xueyan Zhou ◽  
C Keene ◽  
Tao Ma ◽  
...  

Abstract Human aging and neurodegenerative diseases accumulate oxidative DNA damage-associated mutations in neurons. Circadian-regulated tyrosine (Tyr) is increased during aging and in Alzheimer’s Disease (AD). Tyr exacerbates the cognitive decline in the elderly and AD patients. Tyrosyl-tRNA synthetase (TyrRS) that activates Tyr for protein synthesis and participates in DNA repair is depleted in the affected brain regions of AD patients through an unknown mechanism. Here, we found that increased Tyr levels decrease the nuclear and neurite levels of TyrRS in neurons and cause oxidative DNA damage. Although Tyr inhibits protein synthesis at the elongation step, dopamine (DA)- a neurotransmitter derived from Tyr increases TyrRS levels. We previously showed that Tyr inhibits TyrRS-mediated activation of poly-ADP-ribose polymerase 1 (PARP1), a modulator of DNA repair. We now found that trans-resveratrol (trans-RSV) that binds to TyrRS mimicking ‘Tyr conformation’ decreases TyrRS, inhibits DNA repair and induces neurotoxicity. Conversely, cis-RSV binds to TyrRS mimicking a ‘Tyr-free conformation,’ increases TyrRS, facilitates DNA repair, and protects neurons against multiple neurotoxic agents in a TyrRS-dependent manner. Our results suggest that increased Tyr levels may have causal effects in human aging and neurocognitive disorders and offer a plausible explanation to divergent results obtained in clinical trials using RSV.


2021 ◽  
Vol 8 ◽  
Author(s):  
Niko Linzer ◽  
Alexis Trumbull ◽  
Rukiye Nar ◽  
Matthew D. Gibbons ◽  
David T. Yu ◽  
...  

Transcription by RNA polymerase II (Pol II) is regulated by different processes, including alterations in chromatin structure, interactions between distal regulatory elements and promoters, formation of transcription domains enriched for Pol II and co-regulators, and mechanisms involved in the initiation, elongation, and termination steps of transcription. Transcription factor TFII-I, originally identified as an initiator (INR)-binding protein, contains multiple protein–protein interaction domains and plays diverse roles in the regulation of transcription. Genome-wide analysis revealed that TFII-I associates with expressed as well as repressed genes. Consistently, TFII-I interacts with co-regulators that either positively or negatively regulate the transcription. Furthermore, TFII-I has been shown to regulate transcription pausing by interacting with proteins that promote or inhibit the elongation step of transcription. Changes in TFII-I expression in humans are associated with neurological and immunological diseases as well as cancer. Furthermore, TFII-I is essential for the development of mice and represents a barrier for the induction of pluripotency. Here, we review the known functions of TFII-I related to the regulation of Pol II transcription at the stages of initiation and elongation.


QRB Discovery ◽  
2021 ◽  
Vol 2 ◽  
Author(s):  
Tony E.R. Werner ◽  
Istvan Horvath ◽  
Pernilla Wittung-Stafshede

Abstract Although the consequences of the crowded cell environments may affect protein folding, function and misfolding reactions, these processes are often studied in dilute solutions in vitro. We here used biophysical experiments to investigate the amyloid fibril formation process of the fish protein apo-β-parvalbumin in solvent conditions that mimic steric and solvation aspects of the in vivo milieu. Apo-β-parvalbumin is a folded protein that readily adopts an amyloid state via a nucleation–elongation mechanism. Aggregation experiments in the presence of macromolecular crowding agents (probing excluded volume, entropic effects) as well as small molecule osmolytes (probing solvation, enthalpic effects) revealed that both types of agents accelerate overall amyloid formation, but the elongation step was faster with macromolecular crowding agents but slower in the presence of osmolytes. The observations can be explained by the steric effects of excluded volume favoring assembled states and that amyloid nucleation does not involve monomer unfolding. In contrast, the solvation effects due to osmolyte presence promote nucleation but not elongation. Therefore, the amyloid-competent nuclei must be compact with less osmolytes excluded from the surface than either the folded monomers or amyloid fibers. We conclude that, in contrast to other amyloidogenic folded proteins, amyloid formation of apo-β-parvalbumin is accelerated by crowded cell-like conditions due to a nucleation process that does not involve large-scale protein unfolding.


2020 ◽  
Author(s):  
Youssi M. Athar ◽  
Simpson Joseph

AbstractFragile X mental retardation protein (FMRP) is an RNA-binding protein that regulates the translation of numerous mRNAs in neurons. The precise mechanism of translational regulation by FMRP is unknown. Some studies have indicated that FMRP inhibits the initiation step of translation, whereas other studies have indicated that the elongation step of translation is inhibited by FMRP. To determine whether FMRP inhibits the initiation or the elongation step of protein synthesis, we investigated m7G-cap-dependent and IRES-driven, cap-independent translation of several reporter mRNAs in vitro. Our results show that FMRP inhibits both m7G-cap-dependent and cap-independent translation to similar degrees, indicating that the elongation step of translation is inhibited by FMRP. Additionally, we dissected the RNA-binding domains of hFMRP to determine the essential domains for inhibiting translation. We show that the RGG domain, together with the C-terminal domain (CTD), is sufficient to inhibit translation while the KH domains do not inhibit mRNA translation. However, the region between the RGG domain and the KH2 domain may contribute as NT-hFMRP shows more potent inhibition than the RGG-CTD tail alone. Interestingly, we see a correlation between ribosome binding and translation inhibition, suggesting the RGG-CTD tail of hFMRP may anchor FMRP to the ribosome during translation inhibition.


2020 ◽  
Vol 52 (7) ◽  
pp. 749-756 ◽  
Author(s):  
Ling Zhang ◽  
Yinghui Wang ◽  
Hong Dai ◽  
Jie Zhou

Abstract The ribosome is an ancient and universally conserved macromolecular machine that synthesizes proteins in all organisms. Since the discovery of the ribosome by electron microscopy in the mid-1950s, rapid progress has been made in research on it, regarding its architecture and functions. As a machine that synthesizes polypeptides, the sequential addition of amino acids to a growing polypeptide chain occurs during a phase called the elongation cycle. This is the core step of protein translation and is highly conserved between bacteria and eukarya. The elongation cycle involves codon recognition by aminoacyl tRNAs, catalysis of peptide bond formation, and the most complex operation of translation—translocation. In this review, we discuss the fundamental results from structural and functional studies over the past decades that have led to understanding of the three key questions underlying translation.


2020 ◽  
Vol 48 (6) ◽  
pp. 3396-3396
Author(s):  
Xiang Wang ◽  
Jun Guan ◽  
Baocheng Hu ◽  
Robert S Weiss ◽  
George Iliakis ◽  
...  

2019 ◽  
Author(s):  
Nevraj S. Kejiou ◽  
Lena Ilan ◽  
Stefan Aigner ◽  
Enching Luo ◽  
Ines Rabano ◽  
...  

AbstractHow human cells coordinate various metabolic processes, such as glycolysis and protein translation, remains unclear. One key insight is that various metabolic enzymes have been found to associate with mRNAs, however whether these enzymes regulate mRNA biology in response to changes in cellular metabolic state remains unknown. Here we report that the glycolytic enzyme, pyruvate kinase M (PKM), inhibits the translation of 7% of the transcriptome in response to elevated levels of glucose and pyruvate. Our data suggest that in the presence of glucose and pyruvate, PKM associates with ribosomes that are synthesizing stretches of polyacidic nascent polypeptides and stalls the elongation step of translation. PKM-regulated mRNAs encode proteins required for the cell cycle and may explain previous results linking PKM to cell cycle regulation. Our study uncovers an unappreciated link between glycolysis and the ribosome that likely coordinates the intake of glycolytic metabolites with the regulation of protein synthesis and the cell cycle.


Sign in / Sign up

Export Citation Format

Share Document