scholarly journals Time-Delayed In Vivo Assembly of Subunit a into Preformed Escherichia coli FoF1 ATP Synthase

2013 ◽  
Vol 195 (18) ◽  
pp. 4074-4084 ◽  
Author(s):  
B. Brockmann ◽  
K. D. Koop genannt Hoppmann ◽  
H. Strahl ◽  
G. Deckers-Hebestreit
2013 ◽  
Vol 41 (5) ◽  
pp. 1288-1293 ◽  
Author(s):  
Gabriele Deckers-Hebestreit

The ATP synthase (FoF1) of Escherichia coli couples the translocation of protons across the cytoplasmic membrane by Fo to ATP synthesis or hydrolysis in F1. Whereas good knowledge of the nanostructure and the rotary mechanism of the ATP synthase is at hand, the assembly pathway of the 22 polypeptide chains present in a stoichiometry of ab2c10α3β3γδϵ has so far not received sufficient attention. In our studies, mutants that synthesize different sets of FoF1 subunits allowed the characterization of individually formed stable subcomplexes. Furthermore, the development of a time-delayed in vivo assembly system enabled the subsequent synthesis of particular missing subunits to allow the formation of functional ATP synthase complexes. These observations form the basis for a model that describes the assembly pathway of the E. coli ATP synthase from pre-formed subcomplexes, thereby avoiding membrane proton permeability by a concomitant assembly of the open H+-translocating unit within a coupled FoF1 complex.


2011 ◽  
Vol 193 (8) ◽  
pp. 2046-2052 ◽  
Author(s):  
N. Taniguchi ◽  
T. Suzuki ◽  
M. Berney ◽  
M. Yoshida ◽  
G. M. Cook

2015 ◽  
Vol 290 (34) ◽  
pp. 21032-21041 ◽  
Author(s):  
Naman B. Shah ◽  
Thomas M. Duncan

F-type ATP synthases are rotary nanomotor enzymes involved in cellular energy metabolism in eukaryotes and eubacteria. The ATP synthase from Gram-positive and -negative model bacteria can be autoinhibited by the C-terminal domain of its ϵ subunit (ϵCTD), but the importance of ϵ inhibition in vivo is unclear. Functional rotation is thought to be blocked by insertion of the latter half of the ϵCTD into the central cavity of the catalytic complex (F1). In the inhibited state of the Escherichia coli enzyme, the final segment of ϵCTD is deeply buried but has few specific interactions with other subunits. This region of the ϵCTD is variable or absent in other bacteria that exhibit strong ϵ-inhibition in vitro. Here, genetically deleting the last five residues of the ϵCTD (ϵΔ5) caused a greater defect in respiratory growth than did the complete absence of the ϵCTD. Isolated membranes with ϵΔ5 generated proton-motive force by respiration as effectively as with wild-type ϵ but showed a nearly 3-fold decrease in ATP synthesis rate. In contrast, the ϵΔ5 truncation did not change the intrinsic rate of ATP hydrolysis with membranes. Further, the ϵΔ5 subunit retained high affinity for isolated F1 but reduced the maximal inhibition of F1-ATPase by ϵ from >90% to ∼20%. The results suggest that the ϵCTD has distinct regulatory interactions with F1 when rotary catalysis operates in opposite directions for the hydrolysis or synthesis of ATP.


2013 ◽  
Vol 3 (1) ◽  
Author(s):  
Tiziana Gigliobianco ◽  
Marjorie Gangolf ◽  
Bernard Lakaye ◽  
Bastien Pirson ◽  
Christoph von Ballmoos ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document