scholarly journals Mutual Regulation of ntcA and hetR during Heterocyst Differentiation Requires Two Similar PP2C-Type Protein Phosphatases, PrpJ1 and PrpJ2, in Anabaena sp. Strain PCC 7120

2009 ◽  
Vol 191 (19) ◽  
pp. 6059-6066 ◽  
Author(s):  
Jichan Jang ◽  
Lei Shi ◽  
Hui Tan ◽  
Annick Janicki ◽  
Cheng-Cai Zhang

ABSTRACT The filamentous cyanobacterium Anabaena sp. strain PCC 7120 can form heterocysts for N2 fixation. Initiation of heterocyst differentiation depends on mutual regulation of ntcA and hetR. Control of hetR expression by NtcA is partially mediated by nrrA, but other factors must be involved in this regulation. Anabaena has two closely related PP2C-type protein phosphatases, PrpJ1 (formerly PrpJ) and PrpJ2; PrpJ1 is involved in heterocyst maturation. In this study, we show that PrpJ2, like PrpJ1, has Mn2+-dependent phosphatase activity. We further demonstrate that whereas prpJ2 is dispensable for cell growth under different nitrogen regimens tested, a double mutant with both prpJ1 and prpJ2 disrupted did not initiate heterocyst differentiation. Ectopic expression of hetR in the double mutant could rescue the failure to initiate heterocyst development, but the heterocysts formed, like those of a prpJ1 single mutant, were not mature. The expression of prpJ2 was enhanced during heterocyst development, and the upregulation of the gene was directly under the control of NtcA. Upregulation of both ntcA and hetR was affected in the double mutant. We propose that PrpJ1 and PrpJ2 together are required for mutual regulation of ntcA and hetR and are thus involved in regulation of the initiation of heterocyst differentiation.

Life ◽  
2018 ◽  
Vol 8 (4) ◽  
pp. 60 ◽  
Author(s):  
He Zhang ◽  
Xudong Xu

In the filamentous cyanobacterium, Anabaena sp. PCC 7120, single heterocysts differentiate at semi-regular intervals in response to nitrogen stepdown. HetR is a principal regulator of heterocyst differentiation, and hetP and hetZ are two genes that are regulated directly by HetR. In a hetR mutant generated from the IHB (Institute of Hydrobiology) substrain of PCC 7120, heterocyst formation can be restored by moderate expression of hetZ and hetP. The resulting heterocysts are located at terminal positions. We used a tandem promoter, PrbcLPpetE, to express hetZ and hetP strongly in the hetR mutant. Co-expression of hetZ and hetP enabled the hetR mutant to form multiple contiguous heterocysts at both terminal and intercalary positions. Expression of hetZ, alone resulted in terminally located heterocysts, whereas expression of hetP, alone produced enlarged cells in strings. In the absence of HetR, formation of heterocysts was insensitive to the peptide inhibitor, RGSGR.


2003 ◽  
Vol 185 (23) ◽  
pp. 6995-7000 ◽  
Author(s):  
Ho-Sung Yoon ◽  
Martin H. Lee ◽  
Jin Xiong ◽  
James W. Golden

ABSTRACT The filamentous cyanobacterium Anabaena (Nostoc) sp. strain PCC 7120 responds to starvation for fixed nitrogen by producing a semiregular pattern of nitrogen-fixing cells called heterocysts. Overexpression of the hetY gene partially suppressed heterocyst formation, resulting in an abnormal heterocyst pattern. Inactivation of hetY increased the time required for heterocyst maturation and caused defects in heterocyst morphology. The 489-bp hetY gene (alr2300), which is adjacent to patS (asl2301), encodes a protein that belongs to a conserved family of bacterial hypothetical proteins that contain an ATP-binding motif.


Microbiology ◽  
2003 ◽  
Vol 149 (11) ◽  
pp. 3257-3263 ◽  
Author(s):  
Jian-Hong Li ◽  
Sophie Laurent ◽  
Viren Konde ◽  
Sylvie Bédu ◽  
Cheng-Cai Zhang

In the filamentous cyanobacterium Anabaena sp. strain PCC 7120, a starvation of combined nitrogen induces differentiation of heterocysts, cells specialized in nitrogen fixation. How do filaments perceive the limitation of the source of combined nitrogen, and what determines the proportion of heterocysts? In cyanobacteria, 2-oxoglutarate provides a carbon skeleton for the incorporation of inorganic nitrogen. Recently, it has been proposed that the concentration of 2-oxoglutarate reflects the nitrogen status in cyanobacteria. To investigate the effect of 2-oxoglutarate on heterocyst development, a heterologous gene encoding a 2-oxoglutarate permease under the control of a regulated promoter was expressed in Anabaena sp. PCC 7120. The increase of 2-oxoglutarate within cells can trigger heterocyst differentiation in a subpopulation of filaments even in the presence of nitrate. In the absence of a source of combined nitrogen, it can increase heterocyst frequency, advance the timing of commitment to heterocyst development and further increase the proportion of heterocysts in a patS mutant. Here, it is proposed that the intracellular concentration of 2-oxoglutarate is involved in the determination of the proportion of the two cell types according to the carbon/nitrogen status of the filament.


2021 ◽  
Vol 12 ◽  
Author(s):  
Min Huang ◽  
Ju-Yuan Zhang ◽  
Xiaoli Zeng ◽  
Cheng-Cai Zhang

c-di-GMP is a ubiquitous bacterial signal regulating various physiological process. Anabaena PCC 7120 (Anabaena) is a filamentous cyanobacterium able to form regularly-spaced heterocysts for nitrogen fixation, in response to combined-nitrogen deprivation in 24h. Anabaena possesses 16 genes encoding proteins for c-di-GMP metabolism, and their functions are poorly characterized, except all2874 (cdgS) whose deletion causes a decrease in heterocyst frequency 48h after nitrogen starvation. We demonstrated here that c-di-GMP levels increased significantly in Anabaena after combined-nitrogen starvation. By inactivating each of the 16 genes, we found that the deletion of all1175 (cdgSH) led to an increase of heterocyst frequency 24h after nitrogen stepdown. A double mutant ΔcdgSHΔcdgS had an additive effect over the single mutants in regulating heterocyst frequency, indicating that the two genes acted at different time points for heterocyst spacing. Biochemical and genetic data further showed that the functions of CdgSH and CdgS in the setup or maintenance of heterocyst frequency depended on their opposing effects on the intracellular levels of c-di-GMP. Finally, we demonstrated that heterocyst differentiation was completely inhibited when c-di-GMP levels became too high or too low. Together, these results indicate that the homeostasis of c-di-GMP level is important for heterocyst differentiation in Anabaena.


2006 ◽  
Vol 188 (4) ◽  
pp. 1396-1404 ◽  
Author(s):  
Samer Sakr ◽  
Robert Jeanjean ◽  
Cheng-Cai Zhang ◽  
Tania Arcondeguy

ABSTRACT When the filamentous cyanobacterium Anabaena PCC 7120 is exposed to combined nitrogen starvation, 5 to 10% of the cells along each filament at semiregular intervals differentiate into heterocysts specialized in nitrogen fixation. Heterocysts are terminally differentiated cells in which the major cell division protein FtsZ is undetectable. In this report, we provide molecular evidence indicating that cell division is necessary for heterocyst development. FtsZ, which is translationally fused to the green fluorescent protein (GFP) as a reporter, is found to form a ring structure at the mid-cell position. SulA from Escherichia coli inhibits the GTPase activity of FtsZ in vitro and prevents the formation of FtsZ rings when expressed in Anabaena PCC 7120. The expression of sulA arrests cell division and suppresses heterocyst differentiation completely. The antibiotic aztreonam, which is targeted to the FtsI protein necessary for septum formation, has similar effects on both cell division and heterocyst differentiation, although in this case, the FtsZ ring is still formed. Therefore, heterocyst differentiation is coupled to cell division but independent of the formation of the FtsZ ring. Consistently, once the inhibitory pressure of cell division is removed, cell division should take place first before heterocyst differentiation resumes at a normal frequency. The arrest of cell division does not affect the accumulation of 2-oxoglutarate, which triggers heterocyst differentiation. Consistently, a nonmetabolizable analogue of 2-oxoglutarate does not rescue the failure of heterocyst differentiation when cell division is blocked. These results suggest that the control of heterocyst differentiation by cell division is independent of the 2-oxoglutarate signal.


Life ◽  
2018 ◽  
Vol 8 (3) ◽  
pp. 34 ◽  
Author(s):  
Shun-ichi Fukushima ◽  
Shigeki Ehira

In the filamentous cyanobacterium Anabaena sp. strain, PCC 7120, heterocysts (which are nitrogen-fixing cells) are formed in the absence of combined nitrogen in the medium. Heterocysts are separated from one another by 10 to 15 vegetative cells along the filaments, which consist of a few hundred of cells. hetR is necessary for heterocyst differentiation; and patS and hetN, expressed in heterocysts, play important roles in heterocyst pattern formation by laterally inhibiting the expression of hetR in adjacent cells. The results of this study indicated that pknH, which encodes a Ser/Thr kinase, was also involved in heterocyst pattern formation. In the pknH mutant, the heterocyst pattern was normal within 24 h after nitrogen deprivation, but multiple contiguous heterocysts were formed from 24 to 48 h. A time-lapse analysis of reporter strains harboring a fusion between gfp and the hetR promoter indicated that pknH was required to suppress hetR expression in cells adjacent to the preexisting heterocysts. These results indicated that pknH was necessary for the lateral inhibition of heterocyst differentiation to maintain the heterocyst pattern.


2005 ◽  
Vol 57 (1) ◽  
pp. 111-123 ◽  
Author(s):  
Pritty B. Borthakur ◽  
Christine C. Orozco ◽  
Shirley S. Young-Robbins ◽  
Robert Haselkorn ◽  
Sean M. Callahan

1988 ◽  
Vol 170 (11) ◽  
pp. 5034-5041 ◽  
Author(s):  
J W Golden ◽  
C D Carrasco ◽  
M E Mulligan ◽  
G J Schneider ◽  
R Haselkorn

Sign in / Sign up

Export Citation Format

Share Document