scholarly journals Functional Diversity of Four Glycoside Hydrolase Family 3 Enzymes from the Rumen Bacterium Prevotella bryantii B14

2010 ◽  
Vol 192 (9) ◽  
pp. 2335-2345 ◽  
Author(s):  
Dylan Dodd ◽  
Shinichi Kiyonari ◽  
Roderick I. Mackie ◽  
Isaac K. O. Cann

ABSTRACT Prevotella bryantii B14 is a member of the phylum Bacteroidetes and contributes to the degradation of hemicellulose in the rumen. The genome of P. bryantii harbors four genes predicted to encode glycoside hydrolase (GH) family 3 (GH3) enzymes. To evaluate whether these genes encode enzymes with redundant biological functions, each gene was cloned and expressed in Escherichia coli. Biochemical analysis of the recombinant proteins revealed that the enzymes exhibit different substrate specificities. One gene encoded a cellodextrinase (CdxA), and three genes encoded β-xylosidase enzymes (Xyl3A, Xyl3B, and Xyl3C) with different specificities for either para-nitrophenyl (pNP)-linked substrates or substituted xylooligosaccharides. To identify the amino acid residues that contribute to catalysis and substrate specificity within this family of enzymes, the roles of conserved residues (R177, K214, H215, M251, and D286) in Xyl3B were probed by site-directed mutagenesis. Each mutation led to a severely decreased catalytic efficiency without a change in the overall structure of the mutant enzymes. Through amino acid sequence alignments, an amino acid residue (E115) that, when mutated to aspartic acid, resulted in a 14-fold decrease in the k cat/Km for pNP-β-d-xylopyranoside (pNPX) with a concurrent 1.1-fold increase in the k cat/Km for pNP-β-d-glucopyranoside (pNPG) was identified. Amino acid residue E115 may therefore contribute to the discrimination between β-xylosides and β-glucosides. Our results demonstrate that each of the four GH3 enzymes has evolved to perform a specific role in lignopolysaccharide hydrolysis and provide insight into the role of active-site residues in catalysis and substrate specificity for GH3 enzymes.

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Zhi-Zhong Song ◽  
Bin Peng ◽  
Zi-Xia Gu ◽  
Mei-Ling Tang ◽  
Bei Li ◽  
...  

AbstractThe aroma of peach fruit is predominantly determined by the accumulation of γ-decalactone and ester compounds. A previous study showed that the biosynthesis of these aroma compounds in peach fruit is catalyzed by PpAAT1, an alcohol acyltransferase. In this work, we investigated the key active site residues responsible for γ-decalactone and ester biosynthesis. A total of 14 candidate amino acid residues possibly involved in internal esterification and 9 candidate amino acid residues possibly involved in esterification of PpAAT1 were assessed via site-directed mutagenesis. Analyses of the in vitro enzyme activities of PpAAT1 and its site-directed mutant proteins (PpAAT1-SMs) with different amino acid residue mutations as well as the contents of γ-decalactone in transgenic tobacco leaves and peach fruits transiently expressing PpAAT1 and PpAAT1-SMs revealed that site-directed mutation of H165 in the conserved HxxxD motif led to lost enzymatic activity of PpAAT1 in both internal esterification and its reactions, whereas mutation of the key amino acid residue D376 led to the total loss of γ-decalactone biosynthesis activity of PpAAT1. Mutations of 9 and 7 other amino acid residues also dramatically affected the enzymatic activity of PpAAT1 in the internal esterification and esterification reactions, respectively. Our findings provide a biochemical foundation for the mechanical biosynthesis of γ-decalactone and ester compounds catalyzed by PpAAT1 in peach fruits, which could be used to guide the molecular breeding of new peach species with more favorable aromas for consumers.


1987 ◽  
Vol 262 (8) ◽  
pp. 3754-3761
Author(s):  
A.J. Ganzhorn ◽  
D.W. Green ◽  
A.D. Hershey ◽  
R.M. Gould ◽  
B.V. Plapp

FEBS Journal ◽  
2013 ◽  
Vol 280 (18) ◽  
pp. 4560-4571 ◽  
Author(s):  
Takatsugu Miyazaki ◽  
Megumi Ichikawa ◽  
Gaku Yokoi ◽  
Motomitsu Kitaoka ◽  
Haruhide Mori ◽  
...  

2000 ◽  
Vol 275 (30) ◽  
pp. 23020-23026 ◽  
Author(s):  
Valérie Ducros ◽  
Simon J. Charnock ◽  
Urszula Derewenda ◽  
Zygmunt S. Derewenda ◽  
Zbigniew Dauter ◽  
...  

2017 ◽  
Vol 474 (20) ◽  
pp. 3373-3389 ◽  
Author(s):  
Dong-Dong Meng ◽  
Xi Liu ◽  
Sheng Dong ◽  
Ye-Fei Wang ◽  
Xiao-Qing Ma ◽  
...  

Glycoside hydrolase (GH) family 5 is one of the largest GH families with various GH activities including lichenase, but the structural basis of the GH5 lichenase activity is still unknown. A novel thermostable lichenase F32EG5 belonging to GH5 was identified from an extremely thermophilic bacterium Caldicellulosiruptor sp. F32. F32EG5 is a bi-functional cellulose and a lichenan-degrading enzyme, and exhibited a high activity on β-1,3-1,4-glucan but side activity on cellulose. Thin-layer chromatography and NMR analyses indicated that F32EG5 cleaved the β-1,4 linkage or the β-1,3 linkage while a 4-O-substitued glucose residue linked to a glucose residue through a β-1,3 linkage, which is completely different from extensively studied GH16 lichenase that catalyses strict endo-hydrolysis of the β-1,4-glycosidic linkage adjacent to a 3-O-substitued glucose residue in the mixed-linked β-glucans. The crystal structure of F32EG5 was determined to 2.8 Å resolution, and the crystal structure of the complex of F32EG5 E193Q mutant and cellotetraose was determined to 1.7 Å resolution, which revealed that the exit subsites of substrate-binding sites contribute to both thermostability and substrate specificity of F32EG5. The sugar chain showed a sharp bend in the complex structure, suggesting that a substrate cleft fitting to the bent sugar chains in lichenan is a common feature of GH5 lichenases. The mechanism of thermostability and substrate selectivity of F32EG5 was further demonstrated by molecular dynamics simulation and site-directed mutagenesis. These results provide biochemical and structural insights into thermostability and substrate selectivity of GH5 lichenases, which have potential in industrial processes.


2020 ◽  
Vol 6 (10) ◽  
Author(s):  
Ao Li ◽  
Elisabeth Laville ◽  
Laurence Tarquis ◽  
Vincent Lombard ◽  
David Ropartz ◽  
...  

Mannoside phosphorylases are involved in the intracellular metabolization of mannooligosaccharides, and are also useful enzymes for the in vitro synthesis of oligosaccharides. They are found in glycoside hydrolase family GH130. Here we report on an analysis of 6308 GH130 sequences, including 4714 from the human, bovine, porcine and murine microbiomes. Using sequence similarity networks, we divided the diversity of sequences into 15 mostly isofunctional meta-nodes; of these, 9 contained no experimentally characterized member. By examining the multiple sequence alignments in each meta-node, we predicted the determinants of the phosphorolytic mechanism and linkage specificity. We thus hypothesized that eight uncharacterized meta-nodes would be phosphorylases. These sequences are characterized by the absence of signal peptides and of the catalytic base. Those sequences with the conserved E/K, E/R and Y/R pairs of residues involved in substrate binding would target β-1,2-, β-1,3- and β-1,4-linked mannosyl residues, respectively. These predictions were tested by characterizing members of three of the uncharacterized meta-nodes from gut bacteria. We discovered the first known β-1,4-mannosyl-glucuronic acid phosphorylase, which targets a motif of the Shigella lipopolysaccharide O-antigen. This work uncovers a reliable strategy for the discovery of novel mannoside-phosphorylases, reveals possible interactions between gut bacteria, and identifies a biotechnological tool for the synthesis of antigenic oligosaccharides.


1997 ◽  
Vol 323 (2) ◽  
pp. 415-419 ◽  
Author(s):  
Lakshmi KASTURI ◽  
Hegang CHEN ◽  
Susan H. SHAKIN-ESHLEMAN

N-linked glycosylation can profoundly affect protein expression and function. N-linked glycosylation usually occurs at the sequon Asn-Xaa-Ser/Thr, where Xaa is any amino acid residue except Pro. However, many Asn-Xaa-Ser/Thr sequons are glycosylated inefficiently or not at all for reasons that are poorly understood. We have used a site-directed mutagenesis approach to examine how the Xaa and hydroxy (Ser/Thr) amino acid residues in sequons influence core-glycosylation efficiency. We recently demonstrated that certain Xaa amino acids inhibit core glycosylation of the sequon, Asn37-Xaa-Ser, in rabies virus glycoprotein (RGP). Here we examine the impact of different Xaa residues on core-glycosylation efficiency when the Ser residue in this sequon is replaced with Thr. The core-glycosylation efficiencies of RGP variants with different Asn37-Xaa-Ser/Thr sequons were compared by using a cell-free translation/glycosylation system. Using this approach we confirm that four Asn-Xaa-Ser sequons are poor oligosaccharide acceptors: Asn-Trp-Ser, Asn-Asp-Ser, Asn-Glu-Ser and Asn-Leu-Ser. In contrast, Asn-Xaa-Thr sequons are efficiently glycosylated, even when Xaa = Trp, Asp, Glu or Leu. A comparison of the glycosylation status of Asn-Xaa-Ser and Asn-Xaa-Thr sequons in other glycoproteins confirms that sequons with Xaa = Trp, Asp, Glu or Leu are rarely glycosylated when Ser is the hydroxy amino acid residue, and that these sequons are unlikely to serve as glycosylation sites when introduced into proteins by site-directed mutagenesis.


FEBS Journal ◽  
2009 ◽  
Vol 276 (18) ◽  
pp. 5094-5100 ◽  
Author(s):  
Katsuro Yaoi ◽  
Hidemasa Kondo ◽  
Ayako Hiyoshi ◽  
Natsuko Noro ◽  
Hiroshi Sugimoto ◽  
...  

2000 ◽  
Vol 347 (3) ◽  
pp. 865-873 ◽  
Author(s):  
Patricia NTARIMA ◽  
Wim NERINCKX ◽  
Klaus KLARSKOV ◽  
Bart DEVREESE ◽  
Mahalingeshwara K. BHAT ◽  
...  

A series of Ω-epoxyalkyl glycosides of D-xylopyranose, xylobiose and xylotriose were tested as potential active-site-directed inhibitors of xylanases from glycoside hydrolase families 10 and 11. Whereas family-10 enzymes (Thermoascus aurantiacus Xyn and Clostridium thermocellum Xyn Z) are resistant to electrophilic attack of active-site carboxyl residues, glycoside hydrolases of family 11 (Thermomyces lanuginosus Xyn and Trichoderma reesei Xyn II) are irreversibly inhibited. The apparent inactivation and association constants (ki, 1/Ki) are one order of magnitude higher for the xylobiose and xylotriose derivatives. The effects of the aglycone chain length can clearly be described. Xylobiose and n-alkyl β-D-xylopyranosides are competitive ligands and provide protection against inactivation. MS measurements showed 1:1 stoichiometries in most labelling experiments. Electrospray ionization MS/MS analysis revealed the nucleophile Glu86 as the modified residue in the T. lanuginosus xylanase when 2,3-epoxypropyl β-D-xylopyranoside was used, whereas the acid/base catalyst Glu178 was modified by the 3,4-epoxybutyl derivative. The active-site residues Glu86 and Glu177 in T. reesei Xyn II are similarly modified, confirming earlier X-ray crystallographic data [Havukainen, Törrönen, Laitinen and Rouvinen (1996) Biochemistry 35, 9617-9624]. The inability of the Ω-epoxyalkyl xylo(oligo)saccharide derivatives to inactivate family-10 enzymes is discussed in terms of different ligand-subsite interactions.


Sign in / Sign up

Export Citation Format

Share Document