scholarly journals Biochemical characterization of penicillin-resistant and -sensitive penicillin-binding protein 2x transpeptidase activities of Streptococcus pneumoniae and mechanistic implications in bacterial resistance to beta-lactam antibiotics.

1997 ◽  
Vol 179 (15) ◽  
pp. 4901-4908 ◽  
Author(s):  
G Zhao ◽  
W K Yeh ◽  
R H Carnahan ◽  
J Flokowitsch ◽  
T I Meier ◽  
...  
1993 ◽  
Vol 292 (3) ◽  
pp. 735-741 ◽  
Author(s):  
M Jamin ◽  
C Damblon ◽  
S Millier ◽  
R Hakenbeck ◽  
J M Frère

The high-molecular-mass penicillin-binding protein (PBP) 2x, one of the primary targets of beta-lactam antibiotics in Streptococcus pneumoniae, has been produced as a soluble form and purified in large amounts. It has been shown to catalyse hydrolysis and transfer reactions with different ester and thiolester substrates and its catalytic behaviour was often similar to that of the soluble DD-peptidase from Streptomyces R61. This provided an easy method to monitor the activity of the PBP. For the first time, a reliable kinetic study of the interaction between a lethal target and beta-lactam antibiotics has been performed. Characteristic kinetic parameters were obtained with different beta-lactam compounds. These results not only validated the mechanism established with non-essential extracellular enzymes, but will also constitute the basis for comparative studies of the low-affinity variants from penicillin-resistant strains.


2000 ◽  
Vol 44 (6) ◽  
pp. 1745-1748 ◽  
Author(s):  
Genshi Zhao ◽  
Timothy I. Meier ◽  
Joann Hoskins ◽  
Kelly A. McAllister

ABSTRACT To further understand the role of penicillin-binding protein 2a (PBP 2a) of Streptococcus pneumoniae in penicillin resistance, we confirmed the identity of the protein as PBP 2a. The PBP 2a protein migrated electrophoretically to a position corresponding to that of PBP 2x, PBP 2a, and PBP 2b of S. pneumoniae and was absent in a pbp2ainsertional mutant of S. pneumoniae. We found that the affinities of PBP 2a for penicillins were lower than for cephalosporins and a carbapenem. When compared with other S. pneumoniae PBPs, PBP 2a exhibited lower affinities for β-lactam antibiotics, especially penicillins. Therefore, PBP 2a is a low-affinity PBP for β-lactam antibiotics in S. pneumoniae.


2021 ◽  
Vol 9 (8) ◽  
pp. 1685
Author(s):  
Katharina Peters ◽  
Inga Schweizer ◽  
Regine Hakenbeck ◽  
Dalia Denapaite

Reduced amounts of the essential penicillin-binding protein 2x (PBP2x) were detected in two cefotaxime-resistant Streptococcus pneumoniae laboratory mutants C405 and C606. These mutants contain two or four mutations in the penicillin-binding domain of PBP2x, respectively. The transcription of the pbp2x gene was not affected in both mutants; thus, the reduced PBP2x amounts were likely due to post-transcriptional regulation. The mutants carry a mutation in the histidine protein kinase gene ciaH, resulting in enhanced gene expression mediated by the cognate response regulator CiaR. Deletion of htrA, encoding a serine protease regulated by CiaR, or inactivation of HtrA proteolytic activity showed that HtrA is indeed responsible for PBP2x degradation in both mutants, and that this affects β-lactam resistance. Depletion of the PBP2xC405 in different genetic backgrounds confirmed that HtrA degrades PBP2xC405. A GFP-PBP2xC405 fusion protein still localized at the septum in the absence of HtrA. The complementation studies in HtrA deletion strains showed that HtrA can be overexpressed in pneumococcal cells to specific levels, depending on the genetic background. Quantitative Western blotting revealed that the PBP2x amount in C405 strain was less than 20% compared to parental strain, suggesting that PBP2x is an abundant protein in S. pneumoniae R6 strain.


1996 ◽  
Vol 320 (1) ◽  
pp. 197-200 ◽  
Author(s):  
Tapan MUKHERJEE ◽  
Dhiman BASU ◽  
Sebabrata MAHAPATRA ◽  
Colette GOFFIN ◽  
Jos van BEEUMEN ◽  
...  

The 49 kDa penicillin-binding protein (PBP) of Mycobacterium smegmatis catalyses the hydrolysis of the peptide or S-ester bond of carbonyl donors R1-CONH-CHR2-COX-CHR3-COO- (where X is NH or S). In the presence of a suitable amino acceptor, the reaction partitions between the transpeptidation and hydrolysis pathways, with the amino acceptor behaving as a simple alternative nucleophile at the level of the acyl-enzyme. By virtue of its N-terminal sequence similarity, the 49 kDa PBP represents one of the class of monofunctional low-molecular-mass PBPs. An immunologically related protein of Mr 52000 is present in M. tuberculosis. The 49 kDa PBP is sensitive towards amoxycillin, imipenem, flomoxef and cefoxitin.


2004 ◽  
Vol 48 (5) ◽  
pp. 1848-1855 ◽  
Author(s):  
Estelle Pagliero ◽  
Laurent Chesnel ◽  
Julie Hopkins ◽  
Jacques Croizé ◽  
Otto Dideberg ◽  
...  

ABSTRACT Extensive use of β-lactam antibiotics has led to the selection of pathogenic streptococci resistant to β-lactams due to modifications of the penicillin-binding proteins (PBPs). PBP2b from Streptococcus pneumoniae is a monofunctional (class B) high-molecular-weight PBP catalyzing the transpeptidation between adjacent stem peptides of peptidoglycan. The transpeptidase domain of PBP2b isolated from seven clinical resistant (CR) strains contains 7 to 44 amino acid changes over the sequence of PBP2b from the R6 β-lactam-sensitive strain. We show that the extracellular soluble domains of recombinant PBP2b proteins (PBP2b*) originating from these CR strains have an in vitro affinity for penicillin G that is reduced by up to 99% from that of the R6 strain. The Thr446Ala mutation is always observed in CR strains and is close to the key conserved motif (S443SN). The Thr446Ala mutation in R6 PBP2b* displays a 60% reduction in penicillin G affinity in vitro compared to that for the wild-type protein. A recombinant R6 strain expressing the R6 PBP2b Thr446Ala mutation is twofold less sensitive to piperacillin than the parental S. pneumoniae strain. Analysis of the Thr446Ala mutation in the context of the PBP2b CR sequences revealed that its influence depends upon the presence of other unidentified mutations.


Sign in / Sign up

Export Citation Format

Share Document