scholarly journals High-Molecular-Mass Multi-c-Heme Cytochromes from Methylococcus capsulatus Bath

1999 ◽  
Vol 181 (3) ◽  
pp. 991-997 ◽  
Author(s):  
David J. Bergmann ◽  
James A. Zahn ◽  
Alan A. DiSpirito

ABSTRACT The polypeptide and structural gene for a high-molecular-massc-type cytochrome, cytochromec 553O, was isolated from the methanotrophMethylococcus capsulatus Bath. Cytochromec 553O is a homodimer with a subunit molecular mass of 124,350 Da and an isoelectric point of 6.0. The hemec concentration was estimated to be 8.2 ± 0.4 mol of heme c per subunit. The electron paramagnetic resonance spectrum showed the presence of multiple low spin, S = 1/2, hemes. A degenerate oligonucleotide probe synthesized based on the N-terminal amino acid sequence of cytochrome c 553O was used to identify a DNA fragment from M. capsulatusBath that contains occ, the gene encoding cytochrome c 553O. occ is part of a gene cluster which contains three other open reading frames (ORFs). ORF1 encodes a putative periplasmic c-type cytochrome with a molecular mass of 118,620 Da that shows approximately 40% amino acid sequence identity with occand contains nine c-heme-binding motifs. ORF3 encodes a putative periplasmic c-type cytochrome with a molecular mass of 94,000 Da and contains sevenc-heme-binding motifs but shows no sequence homology toocc or ORF1. ORF4 encodes a putative 11,100-Da protein. The four ORFs have no apparent similarity to any proteins in the GenBank database. The subunit molecular masses, arrangement and number of hemes, and amino acid sequences demonstrate that cytochrome c 553O and the gene products of ORF1 and ORF3 constitute a new class of c-type cytochrome.

1996 ◽  
Vol 318 (3) ◽  
pp. 909-914 ◽  
Author(s):  
Kazuhiro KURITA ◽  
Tamayuki SHINOMURA ◽  
Minoru UJITA ◽  
Masahiro ZAKO ◽  
Daihei KIDA ◽  
...  

PG-Lb is a chondroitin/dermatan sulphate proteoglycan first isolated from chick embryo limb cartilage. It had been assumed that osteoglycin represents its mammalian homologue. However, partial amino acid sequences of a novel proteoglycan from bovine epiphyseal cartilage showed high identity with those of chick PG-Lb (P. Neame, L. Rosenberg and M. Höök, personal communication). Reverse transcriptase PCR using degenerate oligonucleotide primers gave a cDNA fragment that might correspond to mouse PG-Lb. We isolated a clone from a cDNA library of newborn mouse epiphyseal cartilage using the cDNA fragment as a probe. The cloned cDNA was 1430 bp long and contained a 966 bp open reading frame which encoded the core protein consisting of 322 amino acid residues. The deduced amino acid sequence showed a high overall identity with chick PG-Lb (about 62%, reaching about 80% over the carboxyl two-thirds). In addition, the amino acid sequence contained a signal peptide, six cysteine residues at the invariant relative position to chick PG-Lb, six leucine-rich repeats at the carboxyl two-thirds, three possible glycosaminoglycan-attachment sites (two sites at the N-terminal side and one site at the C-terminus) and two possible Asn-glycosylation sites near the C-terminus. Northern-blot analysis demonstrated the specific expression of a 1.5 kb message in cartilage and testis. These structural features and the characteristic expression suggest that the cloned molecule is mouse PG-Lb.


1996 ◽  
Vol 319 (3) ◽  
pp. 829-837 ◽  
Author(s):  
William S HAYS ◽  
Steven A. JENISON ◽  
Takashi YAMADA ◽  
Andrzej PASTUSZYN ◽  
Robert H. GLEW

The cytosolic β-glucosidase (EC 3.2.1.21) present in the livers of mammalian species is distinguished by its broad specificity for sugars and its preference for hydrophobic aglycones. We purified the cytosolic β-glucosidase from guinea pig liver and sequenced 142 amino acid residues contained within 12 trypsin digest fragments. Using degenerate oligonucleotide primers deduced from the peptide sequences, a 622 bp cytosolic β-glucosidase cDNA was amplified by reverse-transcriptase PCR, using total guinea pig liver RNA as template. The ‘rapid amplification of cDNA ends (RACE)’ method [Frohman (1993) Methods Enzymol. 218, 340–356] was used to synthesize the remaining segments of the full-length cDNA. The complete cDNA contained 1671 nucleotides with an open reading frame coding for 469 amino acid residues. The amino acid sequence deduced from the cDNA sequence included the amino acid sequences of all 12 trypsin digest fragments derived from the purified enzyme. Amino acid sequence analysis indicates that the guinea pig liver cytosolic β-glucosidase is a Family 1 β-glycosidase and that it is most closely related to mammalian lactase-phlorizin hydrolase. These results suggest that the cytosolic β-glucosidase and lactase-phlorizin hydrolase diverged from a common evolutionary precursor.


2005 ◽  
Vol 71 (12) ◽  
pp. 7955-7960 ◽  
Author(s):  
Moon-Sun Jang ◽  
Young-Mi Lee ◽  
Cheorl-Ho Kim ◽  
Jai-Heon Lee ◽  
Dong-Woo Kang ◽  
...  

ABSTRACT We purified to homogeneity an enzyme from Citrobacter sp. strain KCTC 18061P capable of decolorizing triphenylmethane dyes. The native form of the enzyme was identified as a homodimer with a subunit molecular mass of about 31 kDa. It catalyzes the NADH-dependent reduction of triphenylmethane dyes, with remarkable substrate specificity related to dye structure. Maximal enzyme activity occurred at pH 9.0 and 60°C. The enzymatic reaction product of the triphenylmethane dye crystal violet was identified as its leuco form by UV-visible spectral changes and thin-layer chromatography. A gene encoding this enzyme was isolated based on its N-terminal and internal amino acid sequences. The nucleotide sequence of the gene has a single open reading frame encoding 287 amino acids with a predicted molecular mass of 30,954 Da. Although the deduced amino acid sequence displays 99% identity to the hypothetical protein from Listeria monocytogenes strain 4b H7858, it shows no overall functional similarity to any known protein in the public databases. At the N terminus, the amino acid sequence has high homology to sequences of NAD(P)H-dependent enzymes containing the dinucleotide-binding motif GXXGXXG. The enzyme was heterologously expressed in Escherichia coli, and the purified recombinant enzyme showed characteristics similar to those of the native enzyme. This is the first report of a triphenylmethane reductase characterized from any organism.


1992 ◽  
Vol 284 (3) ◽  
pp. 795-802 ◽  
Author(s):  
J Lu ◽  
A C Willis ◽  
K B M Reid

Human pulmonary surfactant protein D (SP-D) was identified in lung lavage by its similarity to rat SP-D in both its molecular mass and its Ca(2+)-dependent-binding affinity for maltose [Persson, Chang & Crouch (1990) J. Biol. Chem. 265, 5755-5760]. For structural studies, human SP-D was isolated from amniotic fluid by affinity chromatography on maltose-Sepharose followed by f.p.l.c. on Superose 6, which showed it to have a molecular mass of approx. 620 kDa in non-dissociating conditions. On SDS/PAGE the human SP-D behaved as a single band of 150 kDa or 43 kDa in non-reducing or reducing conditions respectively. The presence of a high concentration of glycine (22%), hydroxyproline and hydroxylysine in the amino acid composition of human SP-D indicated that it contained collagen-like structure. Collagenase digestion yielded a 20 kDa collagenase-resistant globular fragment which retained affinity for maltose. Use of maltosyl-BSA as a neoglycoprotein ligand in a solid-phase binding assay showed that human SP-D has a similar carbohydrate-binding specificity to rat SP-D, but a clearly distinct specificity from that of other lectins, such as conglutinin, for a range of simple saccharides. Amino acid sequence analysis established the presence of collagen-like Gly-Xaa-Yaa triplets in human SP-D and also provided sequence data from the globular region of the molecule which was used in the synthesis of oligonucleotide probes. Screening of a human lung cDNA library with the oligonucleotide probes, and also with rabbit anti-(human SP-D), allowed the isolation of two cDNA clones which overlap to give the full coding sequence of human SP-D. The derived amino acid sequence indicates that the mature human SP-D polypeptide chain is 355 residues long, having a short non-collagen-like N-terminal section of 25 residues, followed by a collagen-like region of 177 residues and a C-terminal C-type lectin domain of 153 residues. Comparison of the human SP-D and bovine serum conglutinin amino acid sequences indicated that they showed 66% identity despite their marked differences in carbohydrate specificity.


1995 ◽  
Vol 108 (3) ◽  
pp. 857-868
Author(s):  
A.G. Terasaki ◽  
H. Nakagawa ◽  
E. Kotani ◽  
H. Mori ◽  
K. Ohashi

We purified a 450 kDa protein from a low-salt alkaline extract of chicken gizzard smooth muscle. This high molecular mass protein could be extracted with the low-salt alkaline solution at 37 degrees C but not at 4 degrees C. The 450 kDa protein was isolated from the extract by ammonium sulfate fractionation and following sequential column chromatography using hydroxylapatite, DEAE-Cellulofine A-800m and phenyl-Sepharose CL-4B resins. The partially purified protein molecule resembled a flexible rod with a globular head and an irregular-shaped tail. Its length was approximately 300 nm. The nucleotide sequence of the partial cDNA encoding this protein was determined and analyzed with a data base. The analysis showed that the protein revealed significant homology with the rod region of chicken filamin (57% homology in amino acid sequence). Immunoblot analysis showed that an affinity-purified antibody reacted exclusively with the 450 kDa protein band of smooth, skeletal and cardiac muscle tissues. By indirect immunofluorescence microscopy, we examined the localization of the 450 kDa protein in smooth and skeletal muscle cells. The affinity-purified antibody against the 450 kDa protein stained the dense plaques and dense bodies of smooth muscle, the peripheral region of Z-disks and the subsarcolemmal region of skeletal muscle. Immunoelectron microscopy confirmed the localization of the 450 kDa protein at the peripheral regions of the actin anchoring structures mentioned above. Judging from its amino acid sequence, molecular size, molecular shape, immunological reactivity and localization in muscle cells, the 450 kDa protein seemed to be a new component associated with the actin-anchoring structures of muscle tissues.(ABSTRACT TRUNCATED AT 250 WORDS)


2003 ◽  
Vol 1624 (1-3) ◽  
pp. 109-114 ◽  
Author(s):  
Akinori Ogawa ◽  
Nobuyuki Sumitomo ◽  
Mitsuyoshi Okuda ◽  
Katsuhisa Saeki ◽  
Shuji Kawai ◽  
...  

1985 ◽  
Vol 152 (2) ◽  
pp. 307-314 ◽  
Author(s):  
Friedrich LOTTSPEICH ◽  
Josef KELLERMANN ◽  
Agnes HENSCHEN ◽  
Berthold FOERTSCH ◽  
Werner MuLLER-ESTERL

Author(s):  
Josef Kellermann ◽  
Friedrich Lottspeich ◽  
Agnes Henschen ◽  
Werner Müller-Esterl

Sign in / Sign up

Export Citation Format

Share Document