scholarly journals cdk1- and cdk2-Mediated Phosphorylation of MyoD Ser200 in Growing C2 Myoblasts: Role in Modulating MyoD Half-Life and Myogenic Activity

1999 ◽  
Vol 19 (4) ◽  
pp. 3167-3176 ◽  
Author(s):  
Magali Kitzmann ◽  
Marie Vandromme ◽  
Valerie Schaeffer ◽  
Gilles Carnac ◽  
Jean-Claude Labbé ◽  
...  

ABSTRACT We have examined the role of protein phosphorylation in the modulation of the key muscle-specific transcription factor MyoD. We show that MyoD is highly phosphorylated in growing myoblasts and undergoes substantial dephosphorylation during differentiation. MyoD can be efficiently phosphorylated in vitro by either purified cdk1-cyclin B or cdk1 and cdk2 immunoprecipitated from proliferative myoblasts. Comparative two-dimensional tryptic phosphopeptide mapping combined with site-directed mutagenesis revealed that cdk1 and cdk2 phosphorylate MyoD on serine 200 in proliferative myoblasts. In addition, when the seven proline-directed sites in MyoD were individually mutated, only substitution of serine 200 to a nonphosphorylatable alanine (MyoD-Ala200) abolished the slower-migrating hyperphosphorylated form of MyoD, seen either in vitro after phosphorylation by cdk1-cyclin B or in vivo following overexpression in 10T1/2 cells. The MyoD-Ala200 mutant displayed activity threefold higher than that of wild-type MyoD in transactivation of an E-box-dependent reporter gene and promoted markedly enhanced myogenic conversion and fusion of 10T1/2 fibroblasts into muscle cells. In addition, the half-life of MyoD-Ala200 protein was longer than that of wild-type MyoD, substantiating a role of Ser200 phosphorylation in regulating MyoD turnover in proliferative myoblasts. Taken together, our data show that direct phosphorylation of MyoD Ser200 by cdk1 and cdk2 plays an integral role in compromising MyoD activity during myoblast proliferation.

Endocrinology ◽  
2010 ◽  
Vol 151 (11) ◽  
pp. 5326-5336 ◽  
Author(s):  
Thomas V. Flintegaard ◽  
Peter Thygesen ◽  
Henrik Rahbek-Nielsen ◽  
Steven B. Levery ◽  
Claus Kristensen ◽  
...  

Therapeutic use of recombinant GH typically involves daily sc injections. We examined the possibilities for prolonging the in vivo circulation of GH by introducing N-glycans. Human GH variants with a single potential N-glycosylation site (N-X-S/T) introduced by site-directed mutagenesis were expressed in HEK293 cells. In a scan of 15 different positions for N-glycosylation sites, four positions (amino acids 93, 98, 99, and 101) were efficiently utilized and did not influence GH in vitro activity. A GH variant (3N-GH) with all these sites was produced in CHOK1SV cells and contained up to three N-glycans. Two pools of 3N-GH were purified and separated according to their charge by anion-exchange chromatography. Anion-exchange HPLC revealed that the N-glycans in the two pools were very similar except for the extent of sialylation. Both 3N-GH pools circulated longer in rats than wild-type GH. The terminal half-life of 3N-GH after iv injection was 24-fold prolonged compared with wild-type GH for the pool with the most pronounced sialylation, 13-fold prolonged for the less sialylated pool, and similar to the wild-type for desialylated 3N-GH. The less sialylated 3N-GH pool exhibited a profound pharmacodynamic effect in GH-deficient rats. Over a 4-d period, a single injection of 3N-GH induced a stronger IGF-I response and a larger increase in body weight than daily injections with wild-type GH. Thus, N-glycans can prolong the in vivo circulation and enhance the pharmacodynamic effect of GH. Sialic acids seem to play a pivotal role for the properties of glycosylated GH.


2021 ◽  
Vol 11 (15) ◽  
pp. 6865
Author(s):  
Eun Seon Lee ◽  
Joung Hun Park ◽  
Seong Dong Wi ◽  
Ho Byoung Chae ◽  
Seol Ki Paeng ◽  
...  

The thioredoxin-h (Trx-h) family of Arabidopsis thaliana comprises cytosolic disulfide reductases. However, the physiological function of Trx-h2, which contains an additional 19 amino acids at its N-terminus, remains unclear. In this study, we investigated the molecular function of Trx-h2 both in vitro and in vivo and found that Arabidopsis Trx-h2 overexpression (Trx-h2OE) lines showed significantly longer roots than wild-type plants under cold stress. Therefore, we further investigated the role of Trx-h2 under cold stress. Our results revealed that Trx-h2 functions as an RNA chaperone by melting misfolded and non-functional RNAs, and by facilitating their correct folding into active forms with native conformation. We showed that Trx-h2 binds to and efficiently melts nucleic acids (ssDNA, dsDNA, and RNA), and facilitates the export of mRNAs from the nucleus to the cytoplasm under cold stress. Moreover, overexpression of Trx-h2 increased the survival rate of the cold-sensitive E. coli BX04 cells under low temperature. Thus, our data show that Trx-h2 performs function as an RNA chaperone under cold stress, thus increasing plant cold tolerance.


2014 ◽  
Vol 307 (3) ◽  
pp. H337-H345 ◽  
Author(s):  
Lara Gotha ◽  
Sang Yup Lim ◽  
Azriel B. Osherov ◽  
Rafael Wolff ◽  
Beiping Qiang ◽  
...  

Perlecan is a proteoglycan composed of a 470-kDa core protein linked to three heparan sulfate (HS) glycosaminoglycan chains. The intact proteoglycan inhibits the smooth muscle cell (SMC) response to vascular injury. Hspg2Δ3/Δ3 (MΔ3/Δ3) mice produce a mutant perlecan lacking the HS side chains. The objective of this study was to determine differences between these two types of perlecan in modifying SMC activities to the arterial injury response, in order to define the specific role of the HS side chains. In vitro proliferative and migratory activities were compared in SMC isolated from MΔ3/Δ3 and wild-type mice. Proliferation of MΔ3/Δ3 SMC was 1.5× greater than in wild type ( P < 0.001), increased by addition of growth factors, and showed a 42% greater migratory response than wild-type cells to PDGF-BB ( P < 0.001). In MΔ3/Δ3 SMC adhesion to fibronectin, and collagen types I and IV was significantly greater than wild type. Addition of DRL-12582, an inducer of perlecan expression, decreased proliferation and migratory response to PDGF-BB stimulation in wild-type SMC compared with MΔ3/Δ3. In an in vivo carotid artery wire injury model, the medial thickness, medial area/lumen ratio, and macrophage infiltration were significantly increased in the MΔ3/Δ3 mice, indicating a prominent role of the HS side chain in limiting vascular injury response. Mutant perlecan that lacks HS side chains had a marked reduction in the inhibition of in vitro SMC function and the in vivo arterial response to injury, indicating the critical role of HS side chains in perlecan function in the vessel wall.


2001 ◽  
Vol 21 (24) ◽  
pp. 8565-8574 ◽  
Author(s):  
Anthony J. Greenberg ◽  
Paul Schedl

ABSTRACT The Drosophila melanogaster GAGA factor (encoded by the Trithorax-like [Trl] gene) is required for correct chromatin architecture at diverse chromosomal sites. The Trl gene encodes two alternatively spliced isoforms of the GAGA factor (GAGA-519 and GAGA-581) that are identical except for the length and sequence of the C-terminal glutamine-rich (Q) domain. In vitro and tissue culture experiments failed to find any functional difference between the two isoforms. We made a set of transgenes that constitutively express cDNAs coding for either of the isoforms with the goal of elucidating their roles in vivo. Phenotypic analysis of the transgenes in Trl mutant background led us to the conclusion that GAGA-519 and GAGA-581 perform different, albeit largely overlapping, functions. We also expressed a fusion protein with LacZ disrupting the Q domain of GAGA-519. This LacZ fusion protein compensated for the loss of wild-type GAGA factor to a surprisingly large extent. This suggests that the Q domain either is not required for the essential functions performed by the GAGA protein or is exclusively used for tetramer formation. These results are inconsistent with a major role of the Q domain in chromatin remodeling or transcriptional activation. We also found that GAGA-LacZ was able to associate with sites not normally occupied by the GAGA factor, pointing to a role of the Q domain in binding site choice in vivo.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Paul White ◽  
Samuel F. Haysom ◽  
Matthew G. Iadanza ◽  
Anna J. Higgins ◽  
Jonathan M. Machin ◽  
...  

AbstractThe folding of β-barrel outer membrane proteins (OMPs) in Gram-negative bacteria is catalysed by the β-barrel assembly machinery (BAM). How lateral opening in the β-barrel of the major subunit BamA assists in OMP folding, and the contribution of membrane disruption to BAM catalysis remain unresolved. Here, we use an anti-BamA monoclonal antibody fragment (Fab1) and two disulphide-crosslinked BAM variants (lid-locked (LL), and POTRA-5-locked (P5L)) to dissect these roles. Despite being lethal in vivo, we show that all complexes catalyse folding in vitro, albeit less efficiently than wild-type BAM. CryoEM reveals that while Fab1 and BAM-P5L trap an open-barrel state, BAM-LL contains a mixture of closed and contorted, partially-open structures. Finally, all three complexes globally destabilise the lipid bilayer, while BamA does not, revealing that the BAM lipoproteins are required for this function. Together the results provide insights into the role of BAM structure and lipid dynamics in OMP folding.


2011 ◽  
Vol 109 (suppl_1) ◽  
Author(s):  
Allen M Andres ◽  
Chengqun Huang ◽  
Eric P Ratliff ◽  
Genaro Hernandez ◽  
Pamela Lee ◽  
...  

Autophagy-dependent mitochondrial turnover in response to cellular stress is necessary for maintaining cellular homeostasis. However, the mechanisms that govern the selective targeting of damaged mitochondria are poorly understood. Parkin, an E3 ubiquitin ligase, has been shown to be essential for the selective clearance of damaged mitochondria. Parkin is expressed in the heart, yet its function has not been investigated in the context of cardioprotection. We previously reported that autophagy is required for cardioprotection by ischemic preconditioning (IPC). In the present study, we used simulated ischemia in vitro and IPC in hearts (in vivo and ex vivo) to investigate the role of Parkin in mediating cardioprotection. In HL-1 cells, simulated ischemia induced Parkin translocation to mitochondria and mitochondrial elimination. Mitochondrial loss was blunted in Atg5-deficient cells, revealing the requirement for autophagy in mitochondrial elimination. Consistent with previous reports implicating p62/SQSTM1 in mitophagy, we found that downregulation of p62 attenuated mitophagy and exacerbated cell death in HL-1 cardiomyocytes subjected to simulated ischemia. While wild type mice showed p62 translocation to mitochondria after IPC, Parkin knockout mice exhibited attenuated translocation of p62 to mitochondria. Importantly, ablation of Parkin in mice abolished the cardioprotective effects of IPC. These results reveal for the first time the crucial role of Parkin and mitophagy in cardioprotection.


2007 ◽  
Vol 98 (10) ◽  
pp. 806-812 ◽  
Author(s):  
Vandana Dole ◽  
Wolfgang Bergmeier ◽  
Ian Patten ◽  
Junichi Hirahashi ◽  
Tanya Mayadas ◽  
...  

SummaryWe have previously shown that activated platelets in circulation stimulate release of endothelial Weibel-Palade bodies thus increasing leukocyte rolling in venules. P-selectin on the activated platelets mediates adhesion to leukocytes via PSGL-1 and is rapidly shed into plasma. We were interested in studying the role of PSGL-1 in regulating expression and function of platelet P-selectin. We show here that PSGL-1 is critical for the activation of endothelial cells in venules of mice infused with activated platelets. The interaction of platelet P-selectin with PSGL-1 is also required for P-selectin shedding, as P-selectin was retained significantly longer on the surface of activated platelets infused into PSGL-1-/- compared to wild-type mice. The leukocyte integrin αMβ2 (Mac-1) was not required for P-selectin shedding. In addition to shedding, P-selectin can be downregulated from the platelet surface through internalization and this is the predominant mechanism in the absence of PSGL-1. We demonstrate that leukocyte- neutrophil elastase,known to cleave P-selectin in vitro, is not the major sheddase for P-selectin in vivo. In conclusion, interaction of platelet P-selectin with PSGL-1 is crucial for activation of the endothelium andWeibel-Palade body secretion. The interaction with PSGL-1 also results in rapid shedding of P-selectin thus downregulating the inflammatory potential of the platelet.


2015 ◽  
Vol 84 (1) ◽  
pp. 187-193 ◽  
Author(s):  
Renu Verma ◽  
Thaís Cabrera Galvão Rojas ◽  
Renato Pariz Maluta ◽  
Janaína Luisa Leite ◽  
Livia Pilatti Mendes da Silva ◽  
...  

The extraintestinal pathogen termed avian pathogenicEscherichia coli(APEC) is known to cause colibacillosis in chickens. The molecular basis of APEC pathogenesis is not fully elucidated yet. In this work, we deleted a component of the Yad gene cluster (yadC) in order to understand the role of Yad in the pathogenicity of the APEC strain SCI-07.In vitro, the transcription level ofyadCwas upregulated at 41°C and downregulated at 22°C. TheyadCexpressionin vivowas more pronounced in lungs than in spleen, suggesting a role in the early steps of the infection. Chicks infected with the wild-type and mutant strains presented, respectively, 80% and 50% mortality rates. The ΔyadCstrain presented a slightly decreased ability to adhere to HeLa cells with or without thed-mannose analog compared with the wild type. Real-time PCR (RT-PCR) assays showed thatfimHwas downregulated (P< 0.05) andcsgAandecpAwere slightly upregulated in the mutant strain, showing thatyadCmodulates expression of other fimbriae. Bacterial internalization studies showed that the ΔyadCstrain had a lower number of intracellular bacteria recovered from Hep-2 cells and HD11 cells than the wild-type strain (P< 0.05). Motility assays in soft agar demonstrated that the ΔyadCstrain was less motile than the wild type (P< 0.01). Curiously, flagellum-associated genes were not dramatically downregulated in the ΔyadCstrain. Taken together, the results show that the fimbrial adhesin Yad contributes to the pathogenicity and modulates different biological characteristics of the APEC strain SCI-07.


2017 ◽  
Vol 114 (40) ◽  
pp. 10743-10748 ◽  
Author(s):  
Tali Mazor ◽  
Charles Chesnelong ◽  
Aleksandr Pankov ◽  
Llewellyn E. Jalbert ◽  
Chibo Hong ◽  
...  

IDH1 mutation is the earliest genetic alteration in low-grade gliomas (LGGs), but its role in tumor recurrence is unclear. Mutant IDH1 drives overproduction of the oncometabolite d-2-hydroxyglutarate (2HG) and a CpG island (CGI) hypermethylation phenotype (G-CIMP). To investigate the role of mutant IDH1 at recurrence, we performed a longitudinal analysis of 50 IDH1 mutant LGGs. We discovered six cases with copy number alterations (CNAs) at the IDH1 locus at recurrence. Deletion or amplification of IDH1 was followed by clonal expansion and recurrence at a higher grade. Successful cultures derived from IDH1 mutant, but not IDH1 wild type, gliomas systematically deleted IDH1 in vitro and in vivo, further suggestive of selection against the heterozygous mutant state as tumors progress. Tumors and cultures with IDH1 CNA had decreased 2HG, maintenance of G-CIMP, and DNA methylation reprogramming outside CGI. Thus, while IDH1 mutation initiates gliomagenesis, in some patients mutant IDH1 and 2HG are not required for later clonal expansions.


1998 ◽  
Vol 188 (11) ◽  
pp. 1985-1992 ◽  
Author(s):  
Azumi Hamasaki ◽  
Fujiro Sendo ◽  
Keiko Nakayama ◽  
Noriko Ishida ◽  
Izumi Negishi ◽  
...  

To elucidate the role of A1, a new member of the Bcl-2 family of apoptosis regulators active in hematopoietic cell apoptosis, we established mice lacking A1-a, a subtype of the A1 gene in mice (A1-a−/− mice). Spontaneous apoptosis of peripheral blood neutrophils of A1-a−/− mice was enhanced compared with that of either wild-type mice or heterozygous mutants (A1-a+/− mice). Neutrophil apoptosis inhibition induced by lipopolysaccharide treatment in vitro or transendothelial migration in vivo observed in wild-type mice was abolished in both A1-a−/− and A1-a+/− animals. On the other hand, the extent of tumor necrosis factor α–induced acceleration of neutrophil apoptosis did not differ among A1-a−/−, A1-a+/−, and wild-type mice. The descending order of A1 mRNA expression was wild-type, A1-a+/−, and A1-a−/−. Taken together, these results suggest that A1 is involved in inhibition of certain types of neutrophil apoptosis.


Sign in / Sign up

Export Citation Format

Share Document