scholarly journals hetL Overexpression Stimulates Heterocyst Formation in Anabaena sp. Strain PCC 7120

2002 ◽  
Vol 184 (24) ◽  
pp. 6873-6881 ◽  
Author(s):  
Duan Liu ◽  
James W. Golden

ABSTRACT The cyanobacterium Anabaena sp. strain PCC 7120 forms single heterocysts about every 10 to 15 vegetative cells along filaments. PatS is thought to be a peptide intercellular signal made by developing heterocysts that prevents neighboring cells from differentiating. Overexpression of the patS gene suppresses heterocyst formation. The hetL gene (all3740) was isolated in a genetic screen to identify genes involved in PatS signaling. Extracopy hetL allowed heterocyst formation in a patS overexpression strain. hetL overexpression from a heterologous promoter in wild-type Anabaena PCC 7120 induced multiple-contiguous heterocysts (Mch) in nitrate-containing medium. The predicted HetL protein is composed almost entirely of pentapeptide repeats with a consensus of A(D/N)L*X, where * is a polar amino acid. Thirty Anabaena PCC 7120 genes contain this repeat motif. A synthetic pentapeptide corresponding to the last 5 amino acids of PatS, which suppresses heterocyst formation in the wild type, did not suppress heterocyst formation in a hetL overexpression strain, indicating that HetL overexpression is affecting heterocyst regulation downstream of PatS production. The transcription regulator NtcA is required for the initiation of heterocyst formation. hetL overexpression allowed the initiation of heterocyst development in an ntcA-null mutant, but differentiation was incomplete. hetR and hetC mutations that block heterocyst development are epistatic to hetL overexpression. A hetL-null mutant showed normal heterocyst development and diazotrophic growth, which could indicate that it is not normally involved in regulating development, that it normally plays a nonessential accessory role, or perhaps that its loss is compensated by cross talk or redundancy with other pentapeptide repeat proteins.

2014 ◽  
Vol 197 (2) ◽  
pp. 362-370 ◽  
Author(s):  
Patrick Videau ◽  
Loralyn M. Cozy ◽  
Jasmine E. Young ◽  
Blake Ushijima ◽  
Reid T. Oshiro ◽  
...  

Levels of 2-oxoglutarate (2-OG) reflect nitrogen status in many bacteria. In heterocystous cyanobacteria, a spike in the 2-OG level occurs shortly after the removal of combined nitrogen from cultures and is an integral part of the induction of heterocyst differentiation. In this work, deletion of one of the two annotatedtrpEgenes inAnabaenasp. strain PCC 7120 resulted in a spike in the 2-OG level and subsequent differentiation of a wild-type pattern of heterocysts when filaments of the mutant were transferred from growth on ammonia to growth on nitrate. In contrast, 2-OG levels were unaffected in the wild type, which did not differentiate under the same conditions. An inverted-repeat sequence located upstream oftrpEbound a central regulator of differentiation, HetR,in vitroand was necessary for HetR-dependent transcription of a reporter fusion and complementation of the mutant phenotypein vivo. Functional complementation of the mutant phenotype with the addition of tryptophan suggested that levels of tryptophan, rather than the demonstrated anthranilate synthase activity of TrpE, mediated the developmental response of the wild type to nitrate. A model is presented for the observed increase in 2-OG in thetrpEmutant.


2007 ◽  
Vol 189 (12) ◽  
pp. 4425-4430 ◽  
Author(s):  
Ana Valladares ◽  
Iris Maldener ◽  
Alicia M. Muro-Pastor ◽  
Enrique Flores ◽  
Antonia Herrero

ABSTRACT Heterocyst development was analyzed in mutants of the heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120 bearing inactivated cox2 and/or cox3 genes, encoding heterocyst-specific terminal respiratory oxidases. At the morphological level, the cox2 cox3 double mutant (strain CSAV141) was impaired in membrane reorganization involving the so-called honeycomb system that in the wild-type strain is largely or exclusively devoted to respiration, accumulated glycogen granules at conspicuously higher levels than the wild type (in both vegetative cells and heterocysts), and showed a delay in carboxysome degradation upon combined nitrogen deprivation. Consistently, chemical analysis confirmed higher accumulation of glycogen in strain CSAV141 than in the wild type. No impairment was observed in the formation of the glycolipid or polysaccharide layers of the heterocyst envelope, consistent with the chemical detection of heterocyst-specific glycolipids, or in the expression of the heterocyst-specific genes nifHDK and fdxH. However, nitrogenase activity under oxic conditions was impaired in strain CSAV135 (cox3) and undetectable in strain CSAV141 (cox2 cox3). These results show that these dedicated oxidases are required for normal development and performance of the heterocysts and indicate a central role of Cox2 and, especially, of Cox3 in the respiratory activity of the heterocysts, decisively contributing to protection of the N2 fixation machinery against oxygen. However, in contrast to the case for other diazotrophic bacteria, expression of nif genes in Anabaena seems not to be affected by oxygen.


2007 ◽  
Vol 189 (21) ◽  
pp. 7887-7895 ◽  
Author(s):  
Suncana Moslavac ◽  
Kerstin Nicolaisen ◽  
Oliver Mirus ◽  
Fadi Al Dehni ◽  
Rafael Pernil ◽  
...  

ABSTRACT The filamentous cyanobacterium Anabaena sp. strain PCC 7120 forms heterocysts in a semiregular pattern when it is grown on N2 as the sole nitrogen source. The transition from vegetative cells to heterocysts requires marked metabolic and morphological changes. We show that a trimeric pore-forming outer membrane β-barrel protein belonging to the TolC family, Alr2887, is up-regulated in developing heterocysts and is essential for diazotrophic growth. Mutants defective in Alr2887 did not form the specific glycolipid layer of the heterocyst cell wall, which is necessary to protect nitrogenase from external oxygen. Comparison of the glycolipid contents of wild-type and mutant cells indicated that the protein is not involved in the synthesis of glycolipids but might instead serve as an exporter for the glycolipid moieties or enzymes involved in glycolipid attachment. We propose that Alr2887, together with an ABC transporter like DevBCA, is part of a protein export system essential for assembly of the heterocyst glycolipid layer. We designate the alr2887 gene hgdD (heterocyst glycolipid deposition protein).


2007 ◽  
Vol 282 (46) ◽  
pp. 33641-33648 ◽  
Author(s):  
Ying Zhang ◽  
Hai Pu ◽  
Qingsong Wang ◽  
Shu Cheng ◽  
Weixing Zhao ◽  
...  

PII is an important signal protein for regulation of nitrogen metabolism in bacteria and plants. We constructed a mutant of glnB, encoding PII, in a heterocystous cyanobacterium, Anabaena sp. PCC 7120, with a cre-loxP system. The mutant (MP2α) grew more slowly than the wild type under all nitrogen regimens. It excreted a large amount of ammonium when grown on nitrate due to altered activities of glutamine synthetase and nitrate reductase. MP2α had a low nitrogenase activity but was able to form heterocysts under diazotrophic conditions, suggesting that PII is not required for heterocyst differentiation. Analysis of the PII with mass spectroscopy found tyrosine nitration at Tyr-51 under diazotrophic conditions while no phosphorylation at Ser-49 was detected. The strains 51F and 49A, which have PII with mutations of Y51F and S49A, respectively, were constructed to analyze the functions of the two key residues on the T-loop. Like MP2α, they had low nitrogenase activity and grew slowly under diazotrophic conditions. 49A was also impaired in nitrate uptake and formed heterocysts in the presence of nitrate. The up-regulation of ntcA after nitrogen step-down, which was present in the wild type, was not observed in 51F and 49A. While our results showed that the Ser-49 residue is important to the function of PII in Anabaena sp. PCC 7120, evidence from the PII pattern of the wild type and 49A in non-denaturing gel electrophoresis suggested that Ser-49 is not modified. The possible physiological roles of tyrosine nitration of PII are discussed.


2010 ◽  
Vol 192 (20) ◽  
pp. 5526-5533 ◽  
Author(s):  
Rocío López-Igual ◽  
Enrique Flores ◽  
Antonia Herrero

ABSTRACT Anabaena sp. strain PCC 7120 is a filamentous cyanobacterium that carries out N2 fixation in specialized cells called heterocysts, which exchange nutrients and regulators with the filament's vegetative cells that perform the photosynthetic fixation of CO2. The Anabaena genome carries two genes coding for alkaline/neutral invertases, invA and invB. As shown by Northern analysis, both genes were expressed monocistronically and induced under nitrogen deprivation, although induction was stronger for invB than for invA. Whereas expression of an InvA-N-GFP fusion (green fluorescent protein [GFP] fused to the N terminus of the InvA protein [InvA-N]) was homogeneous along the cyanobacterial filament, consistent with the lack of dependence on HetR, expression of an InvB-N-GFP fusion upon combined nitrogen deprivation took place mainly in differentiating and mature heterocysts. In an hetR genetic background, the InvB-N-GFP fusion was strongly expressed all along the filament. An insertional mutant of invA could grow diazotrophically but was impaired in nifHDK induction and exhibited an increased frequency of heterocysts, suggesting a regulatory role of the invertase-mediated carbon flux in vegetative cells. In contrast, an invB mutant was strongly impaired in diazotrophic growth, showing a crucial role of sucrose catabolism mediated by the InvB invertase in the heterocysts.


2011 ◽  
Vol 35 (10) ◽  
pp. 4426-4434 ◽  
Author(s):  
Ana Evangelista Marques ◽  
Ana Teresa Barbosa ◽  
Joana Jotta ◽  
Manuel Caldeira Coelho ◽  
Paula Tamagnini ◽  
...  

2019 ◽  
Vol 60 (7) ◽  
pp. 1504-1513 ◽  
Author(s):  
Fr�d�ric Deschoenmaeker ◽  
Shoko Mihara ◽  
Tatsuya Niwa ◽  
Hideki Taguchi ◽  
Jiro Nomata ◽  
...  

Abstract Cyanobacteria possess a sophisticated photosynthesis-based metabolism with admirable plasticity. This plasticity is possible via the deep regulation network, the thiol-redox regulations operated by thioredoxin (hereafter, Trx). In this context, we characterized the Trx-m1-deficient mutant strain of Anabaena sp., PCC 7120 (shortly named A.7120), cultivated under nitrogen limitation. Trx-m1 appears to coordinate the nitrogen response and its absence induces large changes in the proteome. Our data clearly indicate that Trx-m1 is crucial for the diazotrophic growth of A.7120. The lack of Trx-m1 resulted in a large differentiation of heterocysts (>20% of total cells), which were barely functional probably due to a weak expression of nitrogenase. In addition, heterocysts of the mutant strain did not display the usual cellular structure of nitrogen-fixative cells. This unveiled why the mutant strain was not able to grow under nitrogen starvation.


2007 ◽  
Vol 189 (7) ◽  
pp. 2873-2885 ◽  
Author(s):  
Yuqing Tian ◽  
Kay Fowler ◽  
Kim Findlay ◽  
Huarong Tan ◽  
Keith F. Chater

ABSTRACT WhiI, a regulator required for efficient sporulation septation in the aerial mycelium of Streptomyces coelicolor, resembles response regulators of bacterial two-component systems but lacks some conserved features of typical phosphorylation pockets. Four amino acids of the abnormal “phosphorylation pocket” were changed by site-directed mutagenesis. Unlike whiI null mutations, these point mutations did not interfere with sporulation septation but had various effects on spore maturation. Transcriptome analysis was used to compare gene expression in the wild-type strain, a D27A mutant (pale gray spores), a D69E mutant (wild-type spores), and a null mutant (white aerial mycelium, no spores) (a new variant of PCR targeting was used to introduce the point mutations into the chromosomal copy of whiI). The results revealed 45 genes that were affected by the deletion of whiI. Many of these showed increased expression in the wild type at the time when aerial growth and development were taking place. About half of them showed reduced expression in the null mutant, and about half showed increased expression. Some, but not all, of these 45 genes were also affected by the D27A mutation, and a few were affected by the D69E mutation. The results were consistent with a model in which WhiI acts differently at sequential stages of development. Consideration of the functions of whiI-influenced genes provides some insights into the physiology of aerial hyphae. Mutation of seven whiI-influenced genes revealed that three of them play roles in spore maturation.


2006 ◽  
Vol 188 (21) ◽  
pp. 7387-7395 ◽  
Author(s):  
Sigal Lechno-Yossef ◽  
Qing Fan ◽  
Shigeki Ehira ◽  
Naoki Sato ◽  
C. Peter Wolk

ABSTRACT Regulatory genes hepK, hepN, henR, and hepS are required for heterocyst maturation in Anabaena sp. strain PCC 7120. They presumptively encode two histidine kinases, a response regulator, and a serine/threonine kinase, respectively. To identify relationships between those genes, we compared global patterns of gene expression, at 14 h after nitrogen step-down, in corresponding mutants and in the wild-type strain. Heterocyst envelopes of mutants affected in any of those genes lack a homogeneous, polysaccharide layer. Those of a henR mutant also lack a glycolipid layer. patA, which encodes a positive effector of heterocyst differentiation, was up-regulated in all mutants except the hepK mutant, suggesting that patA expression may be inhibited by products related to heterocyst development. hepS and hepK were up-regulated if mutated and so appear to be negatively autoregulated. HepS and HenR regulated a common set of genes and so appear to belong to one regulatory system. Some nontranscriptional mechanism may account for the observation that henR mutants lack, and hepS mutants possess, a glycolipid layer, even though both mutations down-regulated genes involved in formation of the glycolipid layer. HepK and HepN also affected transcription of a common set of genes and therefore appear to share a regulatory pathway. However, the transcript abundance of other genes differed very significantly from expression in the wild-type strain in either the hepK or hepN mutant while differing very little from wild-type expression in the other of those two mutants. Therefore, hepK and hepN appear to participate also in separate pathways.


Sign in / Sign up

Export Citation Format

Share Document