respiratory oxidases
Recently Published Documents


TOTAL DOCUMENTS

28
(FIVE YEARS 3)

H-INDEX

15
(FIVE YEARS 1)

2021 ◽  
Vol 22 (19) ◽  
pp. 10852
Author(s):  
Sergey A. Siletsky ◽  
Vitaliy B. Borisov

Terminal respiratory oxidases are highly efficient molecular machines. These most important bioenergetic membrane enzymes transform the energy of chemical bonds released during the transfer of electrons along the respiratory chains of eukaryotes and prokaryotes from cytochromes or quinols to molecular oxygen into a transmembrane proton gradient. They participate in regulatory cascades and physiological anti-stress reactions in multicellular organisms. They also allow microorganisms to adapt to low-oxygen conditions, survive in chemically aggressive environments and acquire antibiotic resistance. To date, three-dimensional structures with atomic resolution of members of all major groups of terminal respiratory oxidases, heme-copper oxidases, and bd-type cytochromes, have been obtained. These groups of enzymes have different origins and a wide range of functional significance in cells. At the same time, all of them are united by a catalytic reaction of four-electron reduction in oxygen into water which proceeds without the formation and release of potentially dangerous ROS from active sites. The review analyzes recent structural and functional studies of oxygen reduction intermediates in the active sites of terminal respiratory oxidases, the features of catalytic cycles, and the properties of the active sites of these enzymes.


2021 ◽  
Author(s):  
Stephen J Giovannoni ◽  
Francis Chan ◽  
Edward W Davis ◽  
Curtis Deutsch ◽  
Sarah S Wolf

The kinetics of microbial respiration suggest that, if excess organic matter is present, oxygen should fall to nanomolar levels, in the range of the Michaelis-Menten constants (Km). Yet even in many biologically productive coastal regions, lowest observed O2 concentrations often remain several orders of magnitude higher than respiratory Km values. We propose the Hypoxic Barrier Hypothesis (HBH) to explain this apparent discrepancy. The HBH postulates that oxidative enzymes involved in organic matter catabolism are kinetically limited by O2 at concentrations far higher than the thresholds for respiration. We found support for the HBH in a meta-analysis of 1137 O2 Km values reported in the literature: the median value for terminal respiratory oxidases was 350 nM, but for other oxidase types the median value was 67 µM. The HBH directs our attention to the kinetic properties of an important class of oxygen-dependent reactions that could help explain the trajectories of ocean ecosystems experiencing O2 stress.


Science ◽  
2019 ◽  
Vol 366 (6461) ◽  
pp. 100-104 ◽  
Author(s):  
S. Safarian ◽  
A. Hahn ◽  
D. J. Mills ◽  
M. Radloff ◽  
M. L. Eisinger ◽  
...  

Cytochrome bd–type quinol oxidases catalyze the reduction of molecular oxygen to water in the respiratory chain of many human-pathogenic bacteria. They are structurally unrelated to mitochondrial cytochrome c oxidases and are therefore a prime target for the development of antimicrobial drugs. We determined the structure of the Escherichia coli cytochrome bd-I oxidase by single-particle cryo–electron microscopy to a resolution of 2.7 angstroms. Our structure contains a previously unknown accessory subunit CydH, the L-subfamily–specific Q-loop domain, a structural ubiquinone-8 cofactor, an active-site density interpreted as dioxygen, distinct water-filled proton channels, and an oxygen-conducting pathway. Comparison with another cytochrome bd oxidase reveals structural divergence in the family, including rearrangement of high-spin hemes and conformational adaption of a transmembrane helix to generate a distinct oxygen-binding site.


2017 ◽  
Vol 114 (28) ◽  
pp. 7426-7431 ◽  
Author(s):  
Nitin P. Kalia ◽  
Erik J. Hasenoehrl ◽  
Nurlilah B. Ab Rahman ◽  
Vanessa H. Koh ◽  
Michelle L. T. Ang ◽  
...  

The recent discovery of small molecules targeting the cytochrome bc1:aa3 in Mycobacterium tuberculosis triggered interest in the terminal respiratory oxidases for antituberculosis drug development. The mycobacterial cytochrome bc1:aa3 consists of a menaquinone:cytochrome c reductase (bc1) and a cytochrome aa3-type oxidase. The clinical-stage drug candidate Q203 interferes with the function of the subunit b of the menaquinone:cytochrome c reductase. Despite the affinity of Q203 for the bc1:aa3 complex, the drug is only bacteriostatic and does not kill drug-tolerant persisters. This raises the possibility that the alternate terminal bd-type oxidase (cytochrome bd oxidase) is capable of maintaining a membrane potential and menaquinol oxidation in the presence of Q203. Here, we show that the electron flow through the cytochrome bd oxidase is sufficient to maintain respiration and ATP synthesis at a level high enough to protect M. tuberculosis from Q203-induced bacterial death. Upon genetic deletion of the cytochrome bd oxidase-encoding genes cydAB, Q203 inhibited mycobacterial respiration completely, became bactericidal, killed drug-tolerant mycobacterial persisters, and rapidly cleared M. tuberculosis infection in vivo. These results indicate a synthetic lethal interaction between the two terminal respiratory oxidases that can be exploited for anti-TB drug development. Our findings should be considered in the clinical development of drugs targeting the cytochrome bc1:aa3, as well as for the development of a drug combination targeting oxidative phosphorylation in M. tuberculosis.


2017 ◽  
Vol 3 (6) ◽  
pp. e1700279 ◽  
Author(s):  
Federica Poiana ◽  
Christoph von Ballmoos ◽  
Nathalie Gonska ◽  
Margareta R. A. Blomberg ◽  
Pia Ädelroth ◽  
...  

2015 ◽  
Vol 43 (5) ◽  
pp. 908-912 ◽  
Author(s):  
Mark Shepherd

The CydDC complex of Escherichia coli is a heterodimeric ATP-binding cassette (ABC) transporter that exports cysteine and glutathione to the periplasm. These reductants are thought to modulate periplasmic redox poise, impacting upon the disulfide folding of periplasmic and secreted proteins involved in bacterial virulence. Diminished CydDC activity abolishes the assembly of functional bd-type respiratory oxidases and perturbs haem ligation during the assembly of c-type cytochromes. The focus herein is upon a newly-discovered interaction of the CydDC complex with a haem cofactor; haem has recently been shown to modulate CydDC activity and structural modelling reveals a potential haem-binding site on the periplasmic surface of the complex. These findings have important implications for future investigations into the potential roles for the CydDC-bound haem in redox sensing and tolerance to nitric oxide (NO).


Author(s):  
Peter Brzezinski ◽  
Christoph von Ballmoos ◽  
Pia Ädelroth ◽  
Robert B. Gennis ◽  
Irina Smirnova ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document