scholarly journals Glycolipid composition of the heterocyst envelope of Anabaena sp. PCC 7120 is crucial for diazotrophic growth and relies on the UDP‐galactose 4‐epimerase HgdA

2019 ◽  
pp. e811 ◽  
Author(s):  
Dmitry Shvarev ◽  
Carolina N. Nishi ◽  
Iris Maldener
2010 ◽  
Vol 192 (20) ◽  
pp. 5526-5533 ◽  
Author(s):  
Rocío López-Igual ◽  
Enrique Flores ◽  
Antonia Herrero

ABSTRACT Anabaena sp. strain PCC 7120 is a filamentous cyanobacterium that carries out N2 fixation in specialized cells called heterocysts, which exchange nutrients and regulators with the filament's vegetative cells that perform the photosynthetic fixation of CO2. The Anabaena genome carries two genes coding for alkaline/neutral invertases, invA and invB. As shown by Northern analysis, both genes were expressed monocistronically and induced under nitrogen deprivation, although induction was stronger for invB than for invA. Whereas expression of an InvA-N-GFP fusion (green fluorescent protein [GFP] fused to the N terminus of the InvA protein [InvA-N]) was homogeneous along the cyanobacterial filament, consistent with the lack of dependence on HetR, expression of an InvB-N-GFP fusion upon combined nitrogen deprivation took place mainly in differentiating and mature heterocysts. In an hetR genetic background, the InvB-N-GFP fusion was strongly expressed all along the filament. An insertional mutant of invA could grow diazotrophically but was impaired in nifHDK induction and exhibited an increased frequency of heterocysts, suggesting a regulatory role of the invertase-mediated carbon flux in vegetative cells. In contrast, an invB mutant was strongly impaired in diazotrophic growth, showing a crucial role of sucrose catabolism mediated by the InvB invertase in the heterocysts.


2019 ◽  
Vol 60 (7) ◽  
pp. 1504-1513 ◽  
Author(s):  
Fr�d�ric Deschoenmaeker ◽  
Shoko Mihara ◽  
Tatsuya Niwa ◽  
Hideki Taguchi ◽  
Jiro Nomata ◽  
...  

Abstract Cyanobacteria possess a sophisticated photosynthesis-based metabolism with admirable plasticity. This plasticity is possible via the deep regulation network, the thiol-redox regulations operated by thioredoxin (hereafter, Trx). In this context, we characterized the Trx-m1-deficient mutant strain of Anabaena sp., PCC 7120 (shortly named A.7120), cultivated under nitrogen limitation. Trx-m1 appears to coordinate the nitrogen response and its absence induces large changes in the proteome. Our data clearly indicate that Trx-m1 is crucial for the diazotrophic growth of A.7120. The lack of Trx-m1 resulted in a large differentiation of heterocysts (>20% of total cells), which were barely functional probably due to a weak expression of nitrogenase. In addition, heterocysts of the mutant strain did not display the usual cellular structure of nitrogen-fixative cells. This unveiled why the mutant strain was not able to grow under nitrogen starvation.


2002 ◽  
Vol 184 (24) ◽  
pp. 6873-6881 ◽  
Author(s):  
Duan Liu ◽  
James W. Golden

ABSTRACT The cyanobacterium Anabaena sp. strain PCC 7120 forms single heterocysts about every 10 to 15 vegetative cells along filaments. PatS is thought to be a peptide intercellular signal made by developing heterocysts that prevents neighboring cells from differentiating. Overexpression of the patS gene suppresses heterocyst formation. The hetL gene (all3740) was isolated in a genetic screen to identify genes involved in PatS signaling. Extracopy hetL allowed heterocyst formation in a patS overexpression strain. hetL overexpression from a heterologous promoter in wild-type Anabaena PCC 7120 induced multiple-contiguous heterocysts (Mch) in nitrate-containing medium. The predicted HetL protein is composed almost entirely of pentapeptide repeats with a consensus of A(D/N)L*X, where * is a polar amino acid. Thirty Anabaena PCC 7120 genes contain this repeat motif. A synthetic pentapeptide corresponding to the last 5 amino acids of PatS, which suppresses heterocyst formation in the wild type, did not suppress heterocyst formation in a hetL overexpression strain, indicating that HetL overexpression is affecting heterocyst regulation downstream of PatS production. The transcription regulator NtcA is required for the initiation of heterocyst formation. hetL overexpression allowed the initiation of heterocyst development in an ntcA-null mutant, but differentiation was incomplete. hetR and hetC mutations that block heterocyst development are epistatic to hetL overexpression. A hetL-null mutant showed normal heterocyst development and diazotrophic growth, which could indicate that it is not normally involved in regulating development, that it normally plays a nonessential accessory role, or perhaps that its loss is compensated by cross talk or redundancy with other pentapeptide repeat proteins.


Toxins ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 478 ◽  
Author(s):  
Alexandra Popova ◽  
Tatiana Semashko ◽  
Natalia Kostina ◽  
Ulla Rasmussen ◽  
Vadim Govorun ◽  
...  

Cyanobacteria synthesize neurotoxic β-N-methylamino-l-alanine (BMAA). The roles of this non-protein amino acid in cyanobacterial cells are insufficiently studied. During diazotrophic growth, filamentous cyanobacteria form single differentiated cells, called heterocysts, which are separated by approximately 12–15 vegetative cells. When combined nitrogen is available, heterocyst formation is blocked and cyanobacterial filaments contain only vegetative cells. In the present study, we discovered that exogenous BMAA induces the process of heterocyst formation in filamentous cyanobacteria under nitrogen-replete conditions that normally repress cell differentiation. BMAA treated cyanobacteria form heterocyst-like dark non-fluorescent non-functional cells. It was found that glutamate eliminates the BMAA mediated derepression. Quantitative polymerase chain reaction (qPCR) permitted to detect the BMAA impact on the transcriptional activity of several genes that are implicated in nitrogen assimilation and heterocyst formation in Anabaena sp. PCC 7120. We demonstrated that the expression of several essential genes increases in the BMAA presence under repressive conditions.


2018 ◽  
Author(s):  
Dmitry Shvarev ◽  
Carolina N. Nishi ◽  
Iris Maldener

The nitrogenase complex in the heterocysts of the filamentous freshwater cyanobacterium Anabaena sp. PCC 7120 fixes atmospheric nitrogen to allow diazotrophic growth. The heterocyst cell envelope protects the nitrogenase from oxygen and consists of a polysaccharide and a glycolipid layer that are formed by a complex process involving the recruitment of different proteins. Here we studied the function of the putative nucleoside-diphosphate-sugar epimerase HgdA, which along with HgdB and HgdC is essential for deposition of the glycolipid layer and growth without a combined nitrogen source. Using site-directed mutagenesis and single homologous recombination approach, we performed a thoroughly functional characterization of HgdA and confirmed that the glycolipid layer of the hgdA mutant heterocyst is aberrant as shown by transmission electron microscopy and chemical analysis. The hgdA gene was expressed during late stages of the heterocyst differentiation. GFP-tagged HgdA protein localized inside the heterocysts. The purified HgdA protein had UDP-galactose 4-epimerase activity in vitro. This enzyme could be responsible for synthesis of heterocyst-specific glycolipid precursors, which could be transported over the cell wall by the ABC transporter components HgdB/HgdC.


2003 ◽  
Vol 47 (5) ◽  
pp. 1239-1249 ◽  
Author(s):  
Ana Valladares ◽  
Antonia Herrero ◽  
Dietmar Pils ◽  
Georg Schmetterer ◽  
Enrique Flores

Sign in / Sign up

Export Citation Format

Share Document