scholarly journals Real-Time Quantitative Broad-Range PCR Assay for Detection of the 16S rRNA Gene Followed by Sequencing for Species Identification

2006 ◽  
Vol 44 (8) ◽  
pp. 2750-2759 ◽  
Author(s):  
F. Zucol ◽  
R. A. Ammann ◽  
C. Berger ◽  
C. Aebi ◽  
M. Altwegg ◽  
...  
2008 ◽  
Vol 14 (5) ◽  
pp. 480-486 ◽  
Author(s):  
C. Schabereiter-Gurtner ◽  
P. Hufnagl ◽  
G. Sonvilla ◽  
B. Selitsch ◽  
M.L. Rotter ◽  
...  

2006 ◽  
Vol 66 (1) ◽  
pp. 156-164 ◽  
Author(s):  
Inge Vliegen ◽  
Jan A. Jacobs ◽  
Erik Beuken ◽  
Cathrien A. Bruggeman ◽  
Cornelis Vink

2008 ◽  
Vol 97 (10) ◽  
pp. 1376-1380 ◽  
Author(s):  
Andreas Ohlin ◽  
Anders Bäckman ◽  
Maria Björkqvist ◽  
Paula Mölling ◽  
Margaretha Jurstrand ◽  
...  

1998 ◽  
Vol 36 (4) ◽  
pp. 1090-1095 ◽  
Author(s):  
Robert F. Massung ◽  
Kim Slater ◽  
Jessica H. Owens ◽  
William L. Nicholson ◽  
Thomas N. Mather ◽  
...  

A sensitive and specific nested PCR assay was developed for the detection of granulocytic ehrlichiae. The assay amplifies the 16S rRNA gene and was used to examine acute-phase EDTA-blood and serum samples obtained from seven humans with clinical presentations compatible with human granulocytic ehrlichiosis. Five of the seven suspected cases were positive by the PCR assay using DNA extracted from whole blood as the template, compared with a serologic assay that identified only one positive sample. The PCR assay using DNA extracted from the corresponding serum samples as the template identified three positive samples. The sensitivity of the assay on human samples was examined, and the limit of detection was shown to be fewer than 2 copies of the 16S rRNA gene. The application of the assay to nonhuman samples demonstrated products amplified from template DNA extracted fromIxodes scapularis ticks collected in Rhode Island and from EDTA-blood specimens obtained from white-tailed deer in Maryland. All PCR products were sequenced and identified as specific to granulocytic ehrlichiae. A putative variant granulocytic ehrlichia 16S rRNA gene sequence was detected among products amplified from both the ticks and the deer blood specimens.


Plant Disease ◽  
2013 ◽  
Vol 97 (10) ◽  
pp. 1375-1375 ◽  
Author(s):  
B. Dutta ◽  
R. D. Gitaitis ◽  
F. H. Sanders ◽  
C. Booth ◽  
S. Smith ◽  
...  

In August 2012, a commercial pumpkin (Cucurbita maxima L. cv. Neon) field in Terrell County, GA, had a disease outbreak that caused severe symptoms on leaves and fruits. Leaves displayed small (2 to 3 mm), angular, water-soaked, yellow lesions while fruits had small (2 to 3 mm), sunken, circular, dry lesions. The field exhibited 40% disease incidence with observable symptoms on fruits. In severe cases, fruit rots were also observed. Symptomatic leaves and fruits were collected from 25 pumpkin plants and isolations were made on both nutrient agar and yeast extract-dextrose-CaCO3 (YDC) agar medium (1). Xanthomonad-like yellow colonies were observed on both agar plates and colonies appeared mucoid on YDC. Suspect bacteria were gram-negative, oxidase positive, hydrolyzed starch and esculin, formed pits on both crystal violet pectate and carboxymethyl cellulose media, but were indole negative and did not produce nitrites from nitrates. Bacterial isolates also produced hypersensitive reactions on tobacco when inoculated with a bacterial suspension of 1 × 108 CFU/ml. Identity of the isolates were identified as genus Xanthomonas by using primers RST2 (5′AGGCCCTGGAAGGTGCCCTGGA3′) and RST3 (5′ATCGCACTGCGTACCGCGCGCGA3′) in a conventional PCR assay, which produced an 840-bp band. The 16S rRNA gene of five isolates was amplified using universal primers fD1 and rD1 (3) and amplified products were sequenced and compared using BLAST in GenBank. The nucleotide sequences (1,200 bp) of the isolates matched Xanthomonas cucurbitae (GenBank Accession AB680438.1), X. campestris (HQ256868.1), X. campestris pv. campestris (NR074936.1), X. hortorum (AB775942.1), and X. campestris pv. raphani (CP002789.1) with 99% similarity. PCR amplification and sequencing of a housekeeping gene atpD (ATP synthase, 720 bp) showed 98% similarity with X. cucurbitae (HM568911.1). Since X. cucurbitae was not listed in the BIOLOG database (Biolog, Hayward, CA), substrate utilization tests for three pumpkin isolates were compared with utilization patterns of Xanthomonas groups using BIOLOG reported by Vauterin et al. (4). The isolates showed 94.7, 93.7, and 92.6% similarity to the reported metabolic profiles of X. campestris, X. cucurbitae, and X. hortorum, respectively, of Xanthomonas groups 15, 8, and 2. However, PCR assay with X. campestris- and X. raphani-specific primers (3) did not amplify the pumpkin isolates, indicating a closer relationship with X. cucurbitae. Spray inoculations of five bacterial isolates in suspensions containing 1 × 108 CFU/ml on 2-week-old pumpkin seedlings (cv. Lumina) (n = five seedlings/isolate/experiment) under greenhouse conditions of 30°C and 70% RH produced typical yellow leaf spot symptoms on 100% of the seedlings. Seedlings (n = 10) spray-inoculated with sterile water were asymptomatic. Reisolated bacterial colonies from symptomatic seedlings displayed similar characteristics to those described above. Further confirmation of bacterial identity was achieved by amplifying and sequencing the 16S rRNA gene, which showed 98 to 99% similarity to X cucurbitae accessions in GenBank. To our knowledge, this is the first report of X. cucurbitae on pumpkin in Georgia. As this bacterium is known to be seedborne, it is possible that the pathogen might have introduced through contaminated seeds. References: (1) N. W. Schaad et al. Laboratory Guide for the Identification of Plant Pathogenic Bacteria, third edition. APS Press. St. Paul, MN, 2001. (2) Y. Besancon et al. Biotechnol. Appl. Biochem. 20:131, 1994. (3) Leu et al. Plant Pathol. Bull. 19:137, 2010. (4) Vauterin et al. Int. J. Syst. Bacteriol. 45:472, 1995.


2019 ◽  
Vol 61 (4) ◽  
pp. 493
Author(s):  
Kenan İstanbullu ◽  
Nilgün Köksal ◽  
Merih Çetinkaya ◽  
Hilal Özkan ◽  
Tahsin Yakut ◽  
...  

2006 ◽  
Vol 47 (10) ◽  
pp. 4468 ◽  
Author(s):  
Joveeta Joseph ◽  
Savitri Sharma ◽  
Somasheila I. Murthy ◽  
Pravin V. Krishna ◽  
Prashant Garg ◽  
...  

2006 ◽  
Vol 52 (2) ◽  
pp. 125-129 ◽  
Author(s):  
Miyuki Morozumi ◽  
Akira Ito ◽  
Somay Y Murayama ◽  
Keiko Hasegawa ◽  
Reiko Kobayashi ◽  
...  

We developed a real-time PCR to detect Mycoplasma pneumoniae with a primer set designed for the 16S rRNA gene. Clinical samples (n = 937) were collected from children with community-acquired pneumonia between April 2002 and March 2004 at 12 Japanese medical institutions. Sensitivity of real-time PCR was calculated as 10 colony-forming units per reaction tube using a pMP01 plasmid carrying a 225-bp target DNA fragment of the 16S rRNA gene in M. pneumoniae M129, a standard strain. Results, obtained within 2 h, were compared with those of conventional culture and serologic methods. Of all cases tested, 151 (16.4%) and 129 (13.8%) were positive for M. pneumoniae by real-time PCR and by culture, respectively. Among the 151 cases, almost all of those tested serologically by passive agglutination showed a rise in M. pneumoniae antibody titre between acute and convalescent sera. We conclude that this real-time PCR can identify M. pneumoniae rapidly and fulfills the need for rapid identification, high sensitivity, and high specificity.Key words: real-time PCR, Mycoplasma pneumoniae identification, pediatrics, community-acquired pneumonia, Mycoplasma pneumoniae culture.


2006 ◽  
Vol 70 (S2) ◽  
pp. 13-21 ◽  
Author(s):  
Eva Garcia-Vazquez ◽  
Paula Alvarez ◽  
Placida Lopes ◽  
Nikoletta Karaiskou ◽  
Juliana Perez ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document