scholarly journals Identification and Characterization of a Peptide Affinity Reagent for Detection of Noroviruses in Clinical Samples

2013 ◽  
Vol 51 (6) ◽  
pp. 1803-1808 ◽  
Author(s):  
J. D. Rogers ◽  
N. J. Ajami ◽  
B. G. Fryszczyn ◽  
M. K. Estes ◽  
R. L. Atmar ◽  
...  
2003 ◽  
Vol 13 (8) ◽  
pp. 1961-1965
Author(s):  
Vladimir R. Kaberdin ◽  
Kenneth J. McDowall

In the postgenomic era, the comprehensive proteomic analysis of metabolic and signaling pathways is inevitably faced with the challenge of large-scale identification and characterization of polypeptides with a particular enzymatic activity. Previous work has shown that a wide variety of enzymatic activities of microbial, plant, and animal origin can be assigned to individual polypeptides using in-gel activity staining (zymography). However, a number of limitations, such as special substrate requirements, the lack of a standard procedure, and difficulties in distinguishing enzymes with overlapping activities have precluded the widespread use of zymography as a routine laboratory method. Here we demonstrate that, by employing small-defined substrates that are covalently attached to the gel matrix, we can largely overcome the aforementioned problems and assay readily a number of different classes of enzymatic activities within gels after standard SDS-polyacrylamide electrophoresis. Moreover, this development is compatible with the two-dimensional separation of proteins and thus has great potential in the high-throughput screening and characterization of complex biological and clinical samples.


Cells ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2307
Author(s):  
Hanna K. Buist ◽  
Urszula Luchowska-Stańska ◽  
Boy van Basten ◽  
Jessica Valli ◽  
Brian O. Smith ◽  
...  

An exchange protein directly activated by cAMP 1 (EPAC1) is an intracellular sensor for cAMP that is involved in a wide variety of cellular and physiological processes in health and disease. However, reagents are lacking to study its association with intracellular cAMP nanodomains. Here, we use non-antibody Affimer protein scaffolds to develop isoform-selective protein binders of EPAC1. Phage-display screens were carried out against purified, biotinylated human recombinant EPAC1ΔDEP protein (amino acids 149–811), which identified five potential EPAC1-selective Affimer binders. Dot blots and indirect ELISA assays were next used to identify Affimer 780A as the top EPAC1 binder. Mutagenesis studies further revealed a potential interaction site for 780A within the EPAC1 cyclic nucleotide binding domain (CNBD). In addition, 780A was shown to co-precipitate EPAC1 from transfected cells and co-localize with both wild-type EPAC1 and a mis-targeting mutant of EPAC1(K212R), predominantly in perinuclear and cytosolic regions of cells, respectively. As a novel EPAC1-selective binder, 780A therefore has the potential to be used in future studies to further understand compartmentalization of the cAMP-EPAC1 signaling system.


Diabetes ◽  
1992 ◽  
Vol 41 (9) ◽  
pp. 1165-1171 ◽  
Author(s):  
R. Kikkawa ◽  
K. Umemura ◽  
M. Haneda ◽  
N. Kajiwara ◽  
S. Maeda ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document