scholarly journals Detection of Influenza A and B Viruses and Respiratory Syncytial Virus by Use of Clinical Laboratory Improvement Amendments of 1988 (CLIA)-Waived Point-of-Care Assays: a Paradigm Shift to Molecular Tests

2018 ◽  
Vol 56 (7) ◽  
Author(s):  
Marwan M. Azar ◽  
Marie L. Landry

ABSTRACT An accurate laboratory diagnosis of influenza, respiratory syncytial virus (RSV), and other respiratory viruses can help to guide patient management, antiviral therapy, infection prevention strategies, and epidemiologic monitoring. Influenza has been the primary driver of rapid laboratory testing due to its morbidity and mortality across all ages, the availability of antiviral therapy, which must be given early to have an effect, and the constant threat of new pandemic strains. Over the past 30 years, there has been an evolution in viral diagnostic testing, from viral culture to rapid antigen detection, and more recently, to highly sensitive nucleic acid amplification tests (NAAT), as well as a trend to testing at the point of care (POC). Simple rapid antigen immunoassays have long been the mainstay for POC testing for influenza A and B viruses and respiratory syncytial virus (RSV) but have been faulted for low sensitivity. In 2015, the first POC NAAT for the detection of influenza was approved by the Food and Drug Administration (FDA), ushering in a new era. In 2017, the FDA reclassified rapid influenza diagnostic tests (RIDTs) from class I to class II devices with new minimum performance standards and a requirement for annual reactivity testing. Consequently, many previously available RIDTs can no longer be purchased in the United States. In this review, recent developments in Clinical Laboratory Improvement Amendments of 1988 (CLIA)-waived testing for respiratory virus infections will be presented, with the focus on currently available FDA-cleared rapid antigen and molecular tests primarily for influenza A and B viruses and RSV.

2019 ◽  
Author(s):  
Stephen Young ◽  
Jamie Phillips ◽  
Christen Griego-Fullbright ◽  
Aaron Wagner ◽  
Patricia Jim ◽  
...  

ABSTRACTAimsPoint-of-care (POC) tests for influenza and respiratory syncytial virus (RSV) offer the potential to improve patient management and antimicrobial stewardship. Studies have focused on performance; however, no workflow assessments have been published comparing POC molecular tests. This study compared the Liat and ID Now systems workflow, to assist end-users in selecting an influenza and/or RSV POC test.MethodsStaffing, walk-away, and turnaround time (TAT) of the Liat and ID Now systems were determined using 40 nasopharyngeal samples, positive for influenza or RSV. The ID Now system requires separate tests for influenza and RSV, so parallel (two instruments) and sequential (one instrument) workflows were evaluated.ResultsThe ID Now ranged 4.1–6.2 minutes for staffing, 1.9–10.9 minutes for walk-away and 6.4–15.8 minutes for TAT per result. The Liat ranged 1.1–1.8 minutes for staffing, 20.0–20.5 minutes for walk-away and 21.3–22.0 minutes for TAT. Mean walk-away time comprised 38.0% (influenza positive) and 68.1% (influenza negative) of TAT for ID Now and 93.7% (influenza/RSV) for Liat. The ID Now parallel workflow resulted in medians of 5.9 minutes for staffing, 9.7 minutes for walk-away, and 15.6 minutes for TAT. Assuming prevalence of 20% influenza and 20% RSV, the ID Now sequential workflow resulted in medians of 9.4 minutes for staffing, 17.4 minutes for walk-away, and 27.1 minutes for TAT.ConclusionsThe ID Now and Liat systems offer different workflow characteristics. Key considerations for implementation include value of both influenza and RSV results, clinical setting, staffing capacity, and instrument(s) placement.


2019 ◽  
Vol 73 (6) ◽  
pp. 328-334 ◽  
Author(s):  
Stephen Young ◽  
Jamie Phillips ◽  
Christen Griego-Fullbright ◽  
Aaron Wagner ◽  
Patricia Jim ◽  
...  

AimsPoint-of-care (POC) tests for influenza and respiratory syncytial virus (RSV) offer the potential to improve patient management and antimicrobial stewardship. Studies have focused on performance; however, no workflow assessments have been published comparing POC molecular tests. This study compared the Liat and ID Now systems workflow, to assist end-users in selecting an influenza and/or RSV POC test.MethodsStaffing, walk-away and turnaround time (TAT) of the Liat and ID Now systems were determined using 40 nasopharyngeal samples, positive for influenza or RSV. The ID Now system requires separate tests for influenza and RSV, so parallel (two instruments) and sequential (one instrument) workflows were evaluated.ResultsThe ID Now ranged 4.1–6.2 min for staffing, 1.9–10.9 min for walk-away and 6.4–15.8 min for TAT per result. The Liat ranged 1.1–1.8 min for staffing, 20.0–20.5 min for walk-away and 21.3–22.0 min for TAT. Mean walk-away time comprised 38.0% (influenza positive) and 68.1% (influenza negative) of TAT for ID Now and 93.7% (influenza/RSV) for Liat. The ID Now parallel workflow resulted in medians of 5.9 min for staffing, 9.7 min for walk-away and 15.6 min for TAT. Assuming prevalence of 20% influenza and 20% RSV, the ID Now sequential workflow resulted in medians of 9.4 min for staffing, 17.4 min for walk-away, and 27.1 min for TAT.ConclusionsThe ID Now and Liat systems offer different workflow characteristics. Key considerations for implementation include value of both influenza and RSV results, clinical setting, staffing capacity, and instrument(s) placement.


2017 ◽  
Vol 56 (2) ◽  
Author(s):  
Daniel M. Cohen ◽  
Jennifer Kline ◽  
Larissa S. May ◽  
Glenn Eric Harnett ◽  
Jane Gibson ◽  
...  

ABSTRACT The Xpert Flu+RSV Xpress Assay is a fast, automated in vitro diagnostic test for qualitative detection and differentiation of influenza A and B viruses and respiratory syncytial virus (RSV) performed on the Cepheid GeneXpert Xpress System. The objective of this study was to establish performance characteristics of the Xpert Flu+RSV Xpress Assay compared to those of the Prodesse ProFlu+ real-time reverse transcription-PCR (RT-PCR) assay (ProFlu+) for the detection of influenza A and B viruses as well as RSV in a Clinical Laboratory Improvement Amendments (CLIA)-waived (CW) setting. Overall, the assay, using fresh and frozen nasopharyngeal (NP) swabs, demonstrated high concordance with results of the ProFlu+ assay in the combined CW and non-CW settings with positive percent agreements (PPA) (100%, 100%, and 97.1%) and negative percent agreements (NPA) (95.2%, 99.5%, and 99.6%) for influenza A and B viruses and RSV, respectively. In conclusion, this multicenter study using the Cepheid Xpert Flu+RSV Xpress Assay demonstrated high sensitivities and specificities for influenza A and B viruses and RSV in ∼60 min for use at the point-of-care in the CW setting.


2018 ◽  
Vol 91 (4) ◽  
pp. 331-335 ◽  
Author(s):  
Andres I. Vecino-Ortiz ◽  
Simon D. Goldenberg ◽  
Sam T. Douthwaite ◽  
Chih-Yuan Cheng ◽  
Rebecca E. Glover ◽  
...  

2015 ◽  
Vol 54 (1) ◽  
pp. 212-215 ◽  
Author(s):  
Sam T. Douthwaite ◽  
Charlotte Walker ◽  
Elisabeth J. Adams ◽  
Catherine Mak ◽  
Andres Vecino Ortiz ◽  
...  

The performance of the Enigma MiniLab assay for influenza A and B viruses and respiratory syncytial virus (RSV) was compared to a centralized laboratory respiratory virus panel. The positive and negative percent agreement for influenza A virus, influenza B virus, and RSV were 79.2% (95% confidence interval [95% CI], 57.8 to 92.9%) and 99.4% (95% CI, 98.4 to 99.9), 100% (95% CI, 47.8 to 100%) and 100% (95% CI, 99.3 to 100%), 98.5% (95% CI, 94.6 to 99.8%) and 94.5% (95% CI, 91.9 to 96.4%), respectively.


2020 ◽  
Vol 6 (3) ◽  
pp. 00018-2020
Author(s):  
A. Joy Allen ◽  
Andrea Gonzalez-Ciscar ◽  
Clare Lendrem ◽  
Jana Suklan ◽  
Karen Allen ◽  
...  

Respiratory syncytial virus is a common cause of bronchiolitis. Historically, point-of-care tests have involved antigen detection technology with limited sensitivity. The aim of this study was to prospectively evaluate the diagnostic accuracy and model the economic impact of the Roche cobas® Liat® point-of-care influenza A/B and respiratory syncytial virus test.The “DEC-RSV” study was a multi-centre, prospective, observational study in children under 2 years presenting with viral respiratory symptoms. A nasopharyngeal aspirate sample was tested using the point-of-care test and standard laboratory-based procedures. The primary outcome was accuracy of respiratory syncytial virus detection. The cost implications of adopting a point-of-care test were modelled using study data.A total of 186 participants were recruited, with both tests performed on 177 samples. The point-of-care test was invalid for 16 samples (diagnostic yield 91%) leaving 161 available for primary analysis. After resolving discrepancies, the cobas® Liat® respiratory syncytial virus test had 100.00% (95% CI 96.07%–100.00%) sensitivity and 98.53% (95% CI 92.08%–99.96%) specificity. Median time to result was 0.6 h (interquartile range (IQR) 0.5–1) for point-of-care testing and 28.9 h (IQR 26.3–48.1) for standard laboratory testing. Estimated non-diagnostic cost savings for 1000 patients, based on isolation decision-making on point-of-care test result, were £57 010, which would increase to £94 847 when cohort nursing is used.In young children the cobas® Liat® point-of-care respiratory syncytial virus test has high diagnostic accuracy using nasopharyngeal aspirates (currently an off-licence sample type). Time to result is clinically important and was favourable compared to laboratory-based testing. The potential exists for cost savings when adopting the point-of-care test.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Ikuyo Takayama ◽  
Shohei Semba ◽  
Kota Yokono ◽  
Shinji Saito ◽  
Mina Nakauchi ◽  
...  

Abstract Influenza virus, respiratory syncytial virus, and human metapneumovirus commonly cause acute upper and lower respiratory tract infections, especially in children and the elderly. Although rapid antigen detection tests for detecting these infections have been introduced recently, these are less sensitive than nucleic acid amplification tests. More recently, highly sensitive point-of-care testings (POCTs) have been developed based on nucleic acid amplification tests, which are easy to use in clinical settings. In this study, loop-mediated isothermal amplification (LAMP)-based POCT “Simprova” to detect influenza A and B viruses, respiratory syncytial virus, and human metapneumovirus was developed. Simprova system is fully automated and does not require skilled personnel. In addition, positive results can be achieved faster than with PCR. In this study, the accuracy of the POCT was retrospectively analyzed using 241 frozen stocked specimens. Additionally, the usability of the Simprova at clinical sites was assessed in a prospective clinical study using 380 clinical specimens and compared to those of real-time PCR and rapid antigen detection test. The novel LAMP-based POCT demonstrated high sensitivity and specificity in characterizing clinical specimens from patients with influenza-like illnesses. The Simprova is a powerful tool for early diagnosis of respiratory viral infections in point-of-care settings.


2018 ◽  
Vol 56 (11) ◽  
Author(s):  
Dithi Banerjee ◽  
Neena Kanwar ◽  
Ferdaus Hassan ◽  
Cynthia Essmyer ◽  
Rangaraj Selvarangan

ABSTRACT The rapid and accurate detection of influenza A virus (FluA), influenza B virus (FluB), and respiratory syncytial virus (RSV) improves patient care. Sample-to-answer (STA) platforms based on nucleic acid amplification and detection of these viruses are simple, automated, and accurate. We compared six such platforms for the detection of FluA, FluB, and RSV: Cepheid GeneXpert Xpress Flu/RSV (Xpert), Hologic Panther Fusion Flu A/B/RSV (Fusion), Cobas influenza A/B & RSV (Liat), Luminex Aries Flu A/B & RSV (Aries), BioFire FilmArray respiratory panel (RP), and Diasorin Simplexa Flu A/B & RSV (Simplexa). Nasopharyngeal (NP) swab specimens (n = 225) from children previously tested by RP were assessed on these platforms. The results were compared to those of the Centers for Disease Control and Prevention (CDC)-developed real-time reverse transcription-PCR (rRT-PCR) assay for influenza A/B viruses and RSV. Subtyping for FluA and FluB was performed for discrepant analysis where applicable. The percent sensitivities/specificities for FluA detection were 100/100 (Fusion), 98.6/99.3 (Xpert), 100/100 (Liat), 98.6/100 (Aries), 98.6/100 (Simplexa), and 100/100 (RP). The percent sensitivities/specificities for FluB detection were 100/100 (Fusion), 97.9/99.4 (Xpert), 97.9/98.3 (Liat), 93.7/99.4 (Aries), 85.4/99.4 (Simplexa), and 95.8/97.7 (RP); and those for RSV detection were 98.1/99.4 (Xpert), 98.1/99.4 (Liat), 96.3/100 (Fusion), 94.4/100 (Aries), 87/94.4 (Simplexa), and 94.4/100 (RP). The 75 strains confirmed to be FluA included 29 pH1N1, 39 H3N2, 4 sH1N1, and 3 untyped strains. The 48 strains confirmed to be FluB included 33 strains of the Yamagata lineage, 13 of the Victoria lineage, 1 of both the Yamagata and Victoria lineages, and 1 of an unknown lineage. All six STA platforms demonstrated >95% sensitivity for FluA detection, while three platforms (Fusion, Xpert, and Liat) demonstrated >95% sensitivity for FluB and RSV detection.


2017 ◽  
Vol 56 (3) ◽  
Author(s):  
Ferdaus Hassan ◽  
Lindsay M. Hays ◽  
Aleta Bonner ◽  
Bradley J. Bradford ◽  
Ruffin Franklin ◽  
...  

ABSTRACTThe Alere i respiratory syncytial virus (RSV) assay is an isothermal nucleic acid amplification test capable of detecting RSV directly from respiratory specimens, with results being available in ≤13 min after test initiation. The objective of this study was to evaluate the performance characteristics of the Alere i RSV assay in a point-of-care setting by using direct nasopharyngeal (NP) swab specimens (direct NP) and nasopharyngeal swab specimens eluted and transported in viral transport medium (VTM NP). The study was a prospective, multicenter, clinical trial conducted at 9 sites across the United States to evaluate the clinical performance of the Alere i RSV assay with respiratory specimens obtained from both children (age, <18 years) and older adults (age, >60 years). The performance of the Alere i RSV assay was compared with that of the reference method, the Prodesse ProFlu+ real-time reverse transcriptase PCR (RT-PCR) assay. All specimens with discrepant test results were tested further by a second FDA-cleared PCR assay (the Verigene respiratory virus plus nucleic acid test; Luminex Inc., TX). A total of 554 subjects with signs and symptoms of respiratory infections were enrolled, and respiratory samples were collected in this study. In comparison with the ProFlu+ real-time RT-PCR, the overall sensitivity and specificity of Alere i RSV assay for the detection of RSV were 98.6% (95% confidence interval [CI], 94.4 to 99.7%) and 98.0% (95% CI, 95.8 to 99.1%), respectively, for direct NP and 98.6% (95% CI, 94.4 to 99.7%) and 97.8% (95% CI, 95.5 to 98.9%), respectively, for VTM NP. The Alere i RSV is a highly sensitive and specific molecular assay ideal for rapid RSV detection in patients in the point-of-care setting due to its minimal hands-on time and rapid result availability.


Sign in / Sign up

Export Citation Format

Share Document