scholarly journals Parallel Validation of Three Molecular Devices for Simultaneous Detection and Identification of Influenza A and B and Respiratory Syncytial Viruses

2017 ◽  
Vol 56 (3) ◽  
Author(s):  
Lifen Ling ◽  
Samuel E. Kaplan ◽  
Juan C. Lopez ◽  
Jeffrey Stiles ◽  
Xuedong Lu ◽  
...  

ABSTRACT Rapid identification of respiratory pathogens, such as influenza virus A (FluA), influenza virus B (FluB), and respiratory syncytial virus (RSV), reduces unnecessary antimicrobial use and enhances infection control practice. We performed a comparative evaluation of three molecular methods: (i) the Aries Flu A/B & RSV, (ii) the Xpert Xpress Flu/RSV, and (iii) the Cobas Flu A/B & RSV assays. The clinical performances of the three methods were evaluated using 200 remnant nasopharyngeal swab (NPS) specimens against a combined reference standard. The limits of detection (LODs) were determined using FluA, FluB, and RSV control strains with known titers. The 95% LODs were between 1.702 and 0.0003 50% tissue culture infective dose (TCID 50 ), with no significant differences revealed among the three assays. Perfect qualitative detection agreement was obtained in the reproducibility study. The Cobas assay failed at the first run on 13 clinical specimens, resulting in an invalid rate of 6.5%. The sensitivities and specificities for all assays were 96.0 to 100.0% and 99.3 to 100% for all three viruses. For on-demand single-specimen and batched 12-specimen workflows, the test turnaround times were 115.5 and 128.8 min for the Aries assay (12 sample capacity), 34.2 and 44.2 min for the Xpress assay (16 sample capacity), and 21.0 and 254.4 min for the Cobas assay (one instrument), respectively. In summary, the Aries, Xpress, and Cobas Liat assays demonstrated excellent sensitivities and specificities for simultaneous detection and identification of FluA, FluB, and RSV from NPS specimens in cancer patients. Test turnaround time was significantly shorter on the Xpress when instrument scalability is unlimited.

2018 ◽  
Vol 2018 ◽  
pp. 1-6 ◽  
Author(s):  
Bishnu Prasad Upadhyay ◽  
Megha Raj Banjara ◽  
Ram Krishna Shrestha ◽  
Masato Tashiro ◽  
Prakash Ghimire

Acute respiratory infections (ARIs) are one of the major public health problems in developing countries like Nepal. Besides the influenza, several other pathogens are responsible for acute respiratory infection in children. Etiology of infections is poorly characterized at the course of clinical management, and hence empirical antimicrobial agents are used. The objective of this study was to characterize the influenza and other respiratory pathogens by real-time PCR assay. A total of 175 throat swab specimens of influenza-positive cases collected at National Influenza Center, Nepal, during the 2015/16 winter season were selected for detecting other respiratory copathogens. Total nucleic acid was extracted using Pure Link viral RNA/DNA mini kit (Invitrogen), and multiplex RT-PCR assays were performed. Influenza A and B viruses were found in 120 (68.6%) and 55 (31.4%) specimens, respectively, among which coinfections were found in 106 (60.6%) specimens. Among the influenza A-positive cases, 25 (20.8%) were A/H1N1 pdm09 and 95 (79.2%) were A/H3 subtypes. Viruses coinfected frequently with influenza virus in children were rhinovirus (26; 14.8%), respiratory syncytial virus A/B (19; 10.8%), adenovirus (14; 8.0%), coronavirus (CoV)-HKU1 (14; 8.0%), CoV-OC43 (5; 2.9%), CoV-229E (2; 1.1%), metapneumovirus A/B (5; 2.9%), bocavirus (6; 3.4%), enterovirus (5; 2.9%), parainfluenza virus-1 (3; 1.7%), and parainfluenza virus-3 (2; 1.1%). Coinfection of Mycoplasma pneumoniae with influenza virus was found in children (5; 2.8%). Most of the viral infection occurred in young children below 5 years of age. In addition to influenza virus, nine different respiratory pathogens were detected, of which coinfections of rhinovirus and respiratory syncytial virus A/B were predominantly found in children. This study gives us better information on the respiratory pathogen profile and coinfection combinations which are important for diagnosis and treatment of ARIs.


2020 ◽  
Vol 58 (5) ◽  
Author(s):  
Amy L. Leber ◽  
Jan Gorm Lisby ◽  
Glen Hansen ◽  
Ryan F. Relich ◽  
Uffe Vest Schneider ◽  
...  

ABSTRACT The QIAstat-Dx Respiratory Panel (QIAstat-Dx RP) is a multiplex in vitro diagnostic test for the qualitative detection of 20 pathogens directly from nasopharyngeal swab (NPS) specimens. The assay is performed using a simple sample-to-answer platform with results available in approximately 69 min. The pathogens identified are adenovirus, coronavirus 229E, coronavirus HKU1, coronavirus NL63, coronavirus OC43, human metapneumovirus A and B, influenza A, influenza A H1, influenza A H3, influenza A H1N1/2009, influenza B, parainfluenza virus 1, parainfluenza virus 2, parainfluenza virus 3, parainfluenza virus 4, rhinovirus/enterovirus, respiratory syncytial virus A and B, Bordetella pertussis, Chlamydophila pneumoniae, and Mycoplasma pneumoniae. This multicenter evaluation provides data obtained from 1,994 prospectively collected and 310 retrospectively collected (archived) NPS specimens with performance compared to that of the BioFire FilmArray Respiratory Panel, version 1.7. The overall percent agreement between QIAstat-Dx RP and the comparator testing was 99.5%. In the prospective cohort, the QIAstat-Dx RP demonstrated a positive percent agreement of 94.0% or greater for the detection of all but four analytes: coronaviruses 229E, NL63, and OC43 and rhinovirus/enterovirus. The test also demonstrated a negative percent agreement of ≥97.9% for all analytes. The QIAstat-Dx RP is a robust and accurate assay for rapid, comprehensive testing for respiratory pathogens.


Author(s):  
Kyoung Ho Roh ◽  
Yu Kyung Kim ◽  
Shin-Woo Kim ◽  
Eun-Rim Kang ◽  
Yong-Jin Yang ◽  
...  

The detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in upper and lower respiratory specimens and coinfection with other respiratory pathogens in patients with coronavirus disease 2019 (COVID-19) was investigated. Study subjects (N = 342) were retrospectively enrolled after being confirmed as SARS-CoV-2 positive, and their nasopharyngeal swab (NPS), oropharyngeal swab (OPS), and sputum specimens were restored for SARS-CoV-2 retesting and respiratory pathogen detection. The majority of the subjects (96.5%, N = 330) were confirmed as SARS-CoV-2 positive using NPS/OPS specimens. Among the COVID-19 patients (N = 342), 7.9% (N = 27) and 0.9% (N = 3) were coinfected with respiratory viruses and Mycoplasma pneumoniae, respectively, yielding an 8.8% (N = 30) overall respiratory pathogen coinfection rate. Of the respiratory virus coinfection cases (N = 27), 92.6% (N = 25) were coinfected with a single respiratory virus and 7.4% (N = 2) with two viruses (metapneumovirus/adenovirus and rhinovirus/bocavirus). No triple coinfections of other respiratory viruses or bacteria with SARS-CoV-2 were detected. Respiratory viruses coinfected in the patients with COVID-19 were as follows: rhinovirus (N = 7, 2.1%), respiratory syncytial virus A and B (N = 6, 1.8%), non-SARS-CoV-2 coronaviruses (229E, NL63, and OC43, N = 5, 1.5%), metapneumovirus (N = 4, 1.2%), influenza A (N = 3, 0.9%), adenovirus (N = 3, 0.9%), and bocavirus (N = 1, 0.3%). In conclusion, the diagnostic value of utilizing NPS/OPS specimens is excellent, and, as the first report in Korea, coinfection with respiratory pathogens was detected at a rate of 8.8% in patients with COVID-19.


Viruses ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 234
Author(s):  
Sarah Al-Beltagi ◽  
Cristian Alexandru Preda ◽  
Leah V. Goulding ◽  
Joe James ◽  
Juan Pu ◽  
...  

The long-term control strategy of SARS-CoV-2 and other major respiratory viruses needs to include antivirals to treat acute infections, in addition to the judicious use of effective vaccines. Whilst COVID-19 vaccines are being rolled out for mass vaccination, the modest number of antivirals in use or development for any disease bears testament to the challenges of antiviral development. We recently showed that non-cytotoxic levels of thapsigargin (TG), an inhibitor of the sarcoplasmic/endoplasmic reticulum (ER) Ca2+ ATPase pump, induces a potent host innate immune antiviral response that blocks influenza A virus replication. Here we show that TG is also highly effective in blocking the replication of respiratory syncytial virus (RSV), common cold coronavirus OC43, SARS-CoV-2 and influenza A virus in immortalized or primary human cells. TG’s antiviral performance was significantly better than remdesivir and ribavirin in their respective inhibition of OC43 and RSV. Notably, TG was just as inhibitory to coronaviruses (OC43 and SARS-CoV-2) and influenza viruses (USSR H1N1 and pdm 2009 H1N1) in separate infections as in co-infections. Post-infection oral gavage of acid-stable TG protected mice against a lethal influenza virus challenge. Together with its ability to inhibit the different viruses before or during active infection, and with an antiviral duration of at least 48 h post-TG exposure, we propose that TG (or its derivatives) is a promising broad-spectrum inhibitor against SARS-CoV-2, OC43, RSV and influenza virus.


2021 ◽  
Vol 9 (6) ◽  
pp. 1293
Author(s):  
Gaspar A. Pacheco ◽  
Nicolás M. S. Gálvez ◽  
Jorge A. Soto ◽  
Catalina A. Andrade ◽  
Alexis M. Kalergis

The human respiratory syncytial virus (hRSV) is one of the leading causes of acute lower respiratory tract infections in children under five years old. Notably, hRSV infections can give way to pneumonia and predispose to other respiratory complications later in life, such as asthma. Even though the social and economic burden associated with hRSV infections is tremendous, there are no approved vaccines to date to prevent the disease caused by this pathogen. Recently, coinfections and superinfections have turned into an active field of study, and interactions between many viral and bacterial pathogens have been studied. hRSV is not an exception since polymicrobial infections involving this virus are common, especially when illness has evolved into pneumonia. Here, we review the epidemiology and recent findings regarding the main polymicrobial infections involving hRSV and several prevalent bacterial and viral respiratory pathogens, such as Staphylococcus aureus, Pseudomonas aeruginosa, Streptococcus pneumoniae, Haemophilus influenzae, Moraxella catarrhalis, Klebsiella pneumoniae, human rhinoviruses, influenza A virus, human metapneumovirus, and human parainfluenza viruses. As reports of most polymicrobial infections involving hRSV lack a molecular basis explaining the interaction between hRSV and these pathogens, we believe this review article can serve as a starting point to interesting and very much needed research in this area.


Diagnostics ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1084
Author(s):  
Ho-Jae Lim ◽  
Jung-Eun Park ◽  
Min-Young Park ◽  
Joo-Hwan Baek ◽  
Sunkyung Jung ◽  
...  

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) triggers disease with nonspecific symptoms that overlap those of infections caused by other seasonal respiratory viruses (RVs), such as the influenza virus (Flu) or respiratory syncytial virus (RSV). A molecular assay for accurate and rapid detection of RV and SARS-CoV-2 is crucial to manage these infections. Here, we compared the analytical performance and clinical reliability of Allplex™ SARS-CoV-2/FluA/FluB/RSV (SC2FabR; Seegene Inc., Seoul, South Korea) kit with those of four commercially available RV detection kits. Upon testing five target viral strains (SARS-CoV-2, FluA, FluB, RSV A, and RSV B), the analytical performance of SC2FabR was similar to that of the other kits, with no significant difference (p ≥ 0.78) in z-scores. The efficiency of SC2FabR (E-value, 81–104%) enabled reliable SARS-CoV-2 and seasonal RV detection in 888 nasopharyngeal swab specimens processed using a fully automated nucleic acid extraction platform. Bland–Altman analyses revealed an agreement value of 95.4% (SD ± 1.96) for the kits, indicating statistically similar results for all five. In conclusion, SC2FabR is a rapid and accurate diagnostic tool for both SARS-CoV-2 and seasonal RV detection, allowing for high-throughput RV analysis with efficiency comparable to that of commercially available kits. This can be used to help manage respiratory infections in patients during and after the coronavirus disease 2019 pandemic.


2021 ◽  
Vol 47 (04) ◽  
pp. 202-208
Author(s):  
Kevin Zhang ◽  
Avika Misra ◽  
Patrick J Kim ◽  
Seyed M Moghadas ◽  
Joanne M Langley ◽  
...  

Background: Public health measures, such as physical distancing and closure of schools and non-essential services, were rapidly implemented in Canada to interrupt the spread of the coronavirus disease 2019 (COVID-19). We sought to investigate the impact of mitigation measures during the spring wave of COVID-19 on the incidence of other laboratory-confirmed respiratory viruses in Hamilton, Ontario. Methods: All nasopharyngeal swab specimens (n=57,503) submitted for routine respiratory virus testing at a regional laboratory serving all acute-care hospitals in Hamilton between January 2010 and June 2020 were reviewed. Testing for influenza A and B, respiratory syncytial virus, human metapneumovirus, parainfluenza I–III, adenovirus, and rhinovirus/enterovirus was done routinely using a laboratory-developed polymerase chain reaction multiplex respiratory viral panel. A Bayesian linear regression model was used to determine the trend of positivity rates of all influenza samples for the first 26 weeks of each year from 2010 to 2019. The mean positivity rate of Bayesian inference was compared with the weekly reported positivity rate of influenza samples in 2020. Results: The positivity rate of influenza in 2020 diminished sharply following the population-wide implementation of COVID-19 interventions. Weeks 12–26 reported 0% positivity for influenza, with the exception of 0.1% reported in week 13. Conclusion: Public health measures implemented during the COVID-19 pandemic were associated with a reduced incidence of other respiratory viruses and should be considered to mitigate severe seasonal influenza and other respiratory virus pandemics.


Author(s):  
Maria Antonia De Francesco ◽  
Caterina Pollara ◽  
Franco Gargiulo ◽  
Mauro Giacomelli ◽  
Arnaldo Caruso

Different preventive public health measures were adopted globally to limit the spread of SARS-CoV-2, such as hand hygiene and the use of masks, travel restrictions, social distance actions such as the closure of schools and workplaces, case and contact tracing, quarantine and lockdown. These measures, in particular physical distancing and the use of masks, might have contributed to containing the spread of other respiratory viruses that occurs principally by contact and droplet routes. The aim of this study was to evaluate the prevalence of different respiratory viruses (influenza viruses A and B, respiratory syncytial virus, parainfluenza viruses 1, 2, 3 and 4, rhinovirus, adenovirus, metapneumovirus and human coronaviruses) after one year of the pandemic. Furthermore, another aim was to evaluate the possible impact of these non-pharmaceutical measures on the circulation of seasonal respiratory viruses. This single center study was conducted between January 2017–February 2020 (pre-pandemic period) and March 2020–May 2021 (pandemic period). All adults >18 years with respiratory symptoms and tested for respiratory pathogens were included in the study. Nucleic acid detection of all respiratory viruses was performed by multiplex real time PCR. Our results show that the test positivity for influenza A and B, metapneumovirus, parainfluenza virus, respiratory syncytial virus and human coronaviruses decreased with statistical significance during the pandemic. Contrary to this, for adenovirus the decrease was not statistically significant. Conversely, a statistically significant increase was detected for rhinovirus. Coinfections between different respiratory viruses were observed during the pre-pandemic period, while the only coinfection detected during pandemic was between SARS-CoV-2 and rhinovirus. To understand how the preventive strategies against SARS-CoV-2 might alter the transmission dynamics and epidemic patterns of respiratory viruses is fundamental to guide future preventive recommendations.


2020 ◽  
Vol 5 (11) ◽  
pp. e003053
Author(s):  
Nianzong Hou ◽  
Kai Wang ◽  
Haiyang Zhang ◽  
Mingjian Bai ◽  
Hao Chen ◽  
...  

BackgroundRespiratory viruses (RVs) is a common cause of illness in people of all ages, at present, different types of sampling methods are available for respiratory viral diagnosis. However, the diversity of available sampling methods and the limited direct comparisons in randomised controlled trials (RCTs) make decision-making difficult. We did a network meta-analysis, which accounted for both direct and indirect comparisons, to determine the detection rate of different sampling methods for RVs.MethodsRelevant articles were retrieved comprehensively by searching the online databases of PubMed, Embase and Cochrane published before 25 March 2020. With the help of R V.3.6.3 software and ‘GeMTC V.0.8.2’ package, network meta-analysis was performed within a Bayesian framework. Node-splitting method and I2 test combined leverage graphs and Gelman-Rubin-Brooks plots were conducted to evaluate the model’s accuracy. The rank probabilities in direct and cumulative rank plots were also incorporated to rank the corresponding sampling methods for overall and specific virus.Results16 sampling methods with 54 438 samples from 57 literatures were ultimately involved in this study. The model indicated good consistency and convergence but high heterogeneity, hence, random-effect analysis was applied. The top three sampling methods for RVs were nasopharyngeal wash (NPW), mid-turbinate swab (MTS) and nasopharyngeal swab (NPS). Despite certain differences, the results of virus-specific subanalysis were basically consistent with RVs: MTS, NPW and NPS for influenza; MTS, NPS and NPW for influenza-a and b; saliva, NPW and NPS for rhinovirus and parainfluenza; NPW, MTS and nasopharyngeal aspirate for respiratory syncytial virus; saliva, NPW and MTS for adenovirus and sputum; MTS and NPS for coronavirus.ConclusionThis network meta-analysis provides supporting evidences that NPW, MTS and NPS have higher diagnostic value regarding RVs infection, moreover, particular preferred methods should be considered in terms of specific virus pandemic. Of course, subsequent RCTs with larger samples are required to validate our findings.


2014 ◽  
Vol 95 (9) ◽  
pp. 1886-1891 ◽  
Author(s):  
Peirui Zhang ◽  
Hongjing Gu ◽  
Chengrong Bian ◽  
Na Liu ◽  
Zhiwei Li ◽  
...  

Respiratory syncytial virus (RSV) is the most common cause of respiratory infection in infants and the elderly, and no vaccine against this virus has yet been licensed. Here, we report a recombinant PR8 influenza virus with the RSV fusion (F) protein epitopes of the subgroup A gene inserted into the influenza virus non-structural (NS) gene (rFlu/RSV/F) that was generated as an RSV vaccine candidate. The rescued viruses were assessed by microscopy and Western blotting. The proper expression of NS1, the NS gene product, and the nuclear export protein (NEP) of rFlu/RSV/F was also investigated using an immunofluorescent assay. The rescued virus replicated well in the MDCK kidney cell line, A549 lung adenocarcinoma cell line and CNE-2Z nasopharyngeal carcinoma cell line. BALB/c mice immunized intranasally with rFlu/RSV/F had specific haemagglutination inhibition antibody responses against the PR8 influenza virus and RSV neutralization test proteins. Furthermore, intranasal immunization with rFlu/RSV/F elicited T helper type 1-dominant cytokine profiles against the RSV strain A2 virus. Taken together, our findings suggested that rFlu/RSV/F was immunogenic in vivo and warrants further development as a promising candidate vaccine.


Sign in / Sign up

Export Citation Format

Share Document