scholarly journals A Recombinant Hendra Virus G Glycoprotein Subunit Vaccine Protects Nonhuman Primates against Hendra Virus Challenge

2014 ◽  
Vol 88 (9) ◽  
pp. 4624-4631 ◽  
Author(s):  
C. E. Mire ◽  
J. B. Geisbert ◽  
K. N. Agans ◽  
Y.-R. Feng ◽  
K. A. Fenton ◽  
...  
2012 ◽  
Vol 4 (146) ◽  
pp. 146ra107-146ra107 ◽  
Author(s):  
K. N. Bossart ◽  
B. Rockx ◽  
F. Feldmann ◽  
D. Brining ◽  
D. Scott ◽  
...  

Vaccine ◽  
2011 ◽  
Vol 29 (34) ◽  
pp. 5623-5630 ◽  
Author(s):  
Jackie Pallister ◽  
Deborah Middleton ◽  
Lin-Fa Wang ◽  
Reuben Klein ◽  
Jessica Haining ◽  
...  

2020 ◽  
Author(s):  
Huiling Xu ◽  
Yanli Wang ◽  
Guangwei Han ◽  
Weihuan Fang ◽  
fang he

Abstract Background: Outbreaks of Classical swine fever virus (CSFV) cause significant economic losses in the swine industry. Vaccination is the major method to prevent and control the disease. As live attenuated vaccines fail to elicit differentiable immunity between infected and vaccinated animals, subunit vaccine was considered as an alternative candidate to prevent and eradicate CSFV. Subunit vaccines present advantages in DIVA immunogenicity and safety. The technology was limited due to the low yield and the high cost with multiple and large doses. The native E2 signal peptide has not been well defined before. Here, the aim of this study is to develop a cost-effective and efficacious E2 vaccine candidate against CSFV with signal peptide and E2 sequence selection. Results: A novel CSFV E2 sequence (E2ZJ) was identified from an epidemic strain of Zhejiang for outstanding secretion in baculovirus and enhanced immunogenicity. E2 secretion induced with the selected signal peptide, SPZJ (SP23), increase at least 50% as compared to any other signal peptides tested. Besides, unique antigenic features were identified in E2ZJ. E2ZJ elicited CSFV antibodies at the earlier stage than other E2 types tested in mice. Moreover, higher level of neutralization antibodies against both genotypes 1 and 2 CSFV with E2ZJ was detected than other E2s with the same dosage. Further, in piglets, E2ZJ successfully elicited neutralizing immunity. A single dose of 5 μg of E2ZJ was sufficient to induce protective antibodies against CSFV in piglets and provided 100% protection against lethal virus challenge. Conclusions: Our studies provide evidence that E2ZJ guided by a novel E2 signal peptide (SPZJ) was efficiently secreted and presented significantly improved immunogenicity than conventional E2 vaccines. Moreover, a single dose of 5 μg E2ZJ is efficacious against CSFV in piglets. Keywords: Classical swine fever virus; novel signal peptide; SPZJ-E2ZJ; subunit vaccine; protective immunity


2006 ◽  
Vol 80 (24) ◽  
pp. 12293-12302 ◽  
Author(s):  
Bruce A. Mungall ◽  
Deborah Middleton ◽  
Gary Crameri ◽  
John Bingham ◽  
Kim Halpin ◽  
...  

ABSTRACT Nipah virus (NiV) and Hendra virus (HeV) are paramyxoviruses capable of causing considerable morbidity and mortality in a number of mammalian species, including humans. Case reports from outbreaks and previous challenge experiments have suggested that cats were highly susceptible to NiV infection, responding with a severe respiratory disease and systemic infection. Here we have assessed the cat as a model of experimental NiV infection and use it in the evaluation of a subunit vaccine comprised of soluble G glycoprotein (sG). Two groups of two adult cats each were inoculated subcutaneously with either 500 or 5,000 50% tissue culture infective dose(s) (TCID50) of NiV. Animals were monitored closely for disease onset, and extensive analysis was conducted on samples and tissues taken during infection and at necropsy to determine viral load and tissue tropism. All animals developed clinical disease 6 to 9 days postinfection, a finding consistent with previous observations. In a subsequent experiment, two cats were immunized with HeV sG and two were immunized with NiV sG. Homologous serum neutralizing titers were greater than 1:20,000, and heterologous titers were greater than 1:20,000 to 16-fold lower. Immunized animals and two additional naive controls were then challenged subcutaneously with 500 TCID50 of NiV. Naive animals developed clinical disease 6 to 13 days postinfection, whereas none of the immunized animals showed any sign of disease. TaqMan PCR analysis of samples from naive animals revealed considerable levels of NiV genome in a wide range of tissues, whereas the genome was evident in only two immunized cats in only four samples and well below the limit of accurate detection. These results indicate that the cat provides a consistent model for acute NiV infection and associated pathogenesis and an effective subunit vaccine strategy appears achievable.


2019 ◽  
Vol 221 (Supplement_4) ◽  
pp. S493-S498 ◽  
Author(s):  
Michael K Lo ◽  
Jessica R Spengler ◽  
Stephen R Welch ◽  
Jessica R Harmon ◽  
JoAnn D Coleman-McCray ◽  
...  

Abstract In the absence of approved vaccines and therapeutics for use in humans, Nipah virus (NiV) continues to cause fatal outbreaks of encephalitis and respiratory disease in Bangladesh and India on a near-annual basis. We determined that a single dose of a lipid nanoparticle nucleoside-modified messenger RNA vaccine encoding the soluble Hendra virus glycoprotein protected up to 70% of Syrian hamsters from lethal NiV challenge, despite animals having suboptimally primed immune responses before challenge. These data provide a foundation from which to optimize future messenger RNA vaccination studies against NiV and other highly pathogenic viruses.


Virology ◽  
2002 ◽  
Vol 303 (1) ◽  
pp. 130-137 ◽  
Author(s):  
Hélène Plotnicky-Gilquin ◽  
Dominique Cyblat-Chanal ◽  
Liliane Goetsch ◽  
Christine Lacheny ◽  
Christine Libon ◽  
...  

Vaccine ◽  
2015 ◽  
Vol 33 (33) ◽  
pp. 4105-4116 ◽  
Author(s):  
Dhanasekaran Govindarajan ◽  
Steven Meschino ◽  
Liming Guan ◽  
David E. Clements ◽  
Jan H. ter Meulen ◽  
...  

2007 ◽  
Vol 196 (s2) ◽  
pp. S430-S437 ◽  
Author(s):  
Kelly L. Warfield ◽  
Dana L. Swenson ◽  
Gene G. Olinger ◽  
Warren V. Kalina ◽  
M. Javad Aman ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document